AFRL-IF-RS-TR-2002-268

Final Technical Report
October 2002

PLAN MANAGEMENT CAPABILITIES FOR
AUTONOMOUS AGENTS: EXTENDING THE
BASIC MECHANISMS

University of Pittsburgh

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J688

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2002-268 has been reviewed and is approved for publication.

Joom

FRANK H. BORN
Project Engineer

APPROVED:

FOR THE DIRECTOR:

EUGENE C. BLACKBURN, Chief
Information Technology Division
Information Directorate

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,

and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE
October 2002

3. REPORT TYPE AND DATES COVERED

Final May 00 — May 02

4. TITLE AND SUBTITLE
PLAN MANAGEMENT CAPABILITIES FOR AUTONOMOUS AGENTS:
EXTENDING THE BASIC MECHANISMS

6. AUTHOR(S)
Martha E. Pollack

5. FUNDING NUMBERS
C -F30602-00-2-0547

PE -62301E
PR -AGEN
TA - TO
Wu - P1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Pittsburgh
Pittsburgh Pennsylvania

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFTB

3701 North Fairfax Drive 525 Brooks Road

Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-268

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Frank H. Born/IFTB/(315) 330-4762/ Frank.Born@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

Software agents can assist a human user in overseeing, managing and coordinating large and potentially complex sets
of plans. Such agents are potentially of great value in both military and civilian applications. This report addresses plan

management software agent technology.

There were three main goals in the research:

1. Design, implementation, and experimental analysis of algorithms for supporting plan management capabilities in

agent software systems.

2. Adaptation of the plan management agents into a system that can interact with the agent sandbox, or "grid",
developed in the DARPA CoABS program for agent registry, search, and interaction.

3. Development of initial techniques for using the plan management agent algorithms to support outsourcing of tasks in

agent communities,

14. SUBJECT TERMS
Planning, Agent Software, Artificial Intelligence

15. NUMBER OF PAGES
87

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION

OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED

19. SECURITY CLASSIFICATION

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

TABLE OF CONTENTS

SECTION TITLE PAGE
1. Plan Management Capabilities for Autonomous Agents: Extending the Basic
MeEChanISIMIS. ... oieii e 1
2. A Scheme for Integrating E-Services in Establishing Virtual Enterprises......... 6
3. Flexible Dispatch of Disjunctive Plans...............oooooviiiiiiiii i, 15
4. Flexibility Measures of Sets of Plans....................ococoiiiiiiin e, 21
5. An Evaluation of the Java-Based Approaches to Web Database Access (2002) 43
6. An Evaluation of the Java-Based Approaches to Web Database Access (2000) 65
7. A Survey on the Java-Based Approaches for Web Database Connectivity........ 80

Plan Management Capabilities for Autonomous Agents:
Extending the Basic Mechanisms

Prof. Panos Chrysanthis Prof. Martha E. Pollack
Computer Science Dept. Dept. of Electrical Engineering and Computer
Science
University of Pittsburgh University of Michigan
Pittsburgh, PA 15260 Ann Arbor, MI 48103
(412)624-8924 (734) 615-8048
panos@cs.pitt.edu pollackm@eecs.umich.edu
Technical Results.

This report presents the work conducted under the direction of Prof. Panos Chrysanthis (Univ. of
Pittsburgh) and Prof. Martha E. Poliack (Univ. of Michigan) as part of the DARPA Control of
Agent-Based Systems Program, on Contract #F30602-00-0547. The contract covered roughly a
one-year period, from 5/15/00-6/30/01.

This project was aimed at advancing the state of the art in plan-management agents: agents that
assist a human user in overseeing, managing, and coordinating large and potentially complex sets
of plans. Such agents are potentially of great value in both military and commercial applications.
For example, and officer managing a complex military operation might use a plan management
agent to track the allocation of resources such as personnel and equipment, guarantee consistency
among various operational goals, and guide reactions to new developments. In this project, we
extended an existing prototype plan-management agent (PMA), previously built in our research
group. We focused on, and achieved three main goals:

1. The design, implementation, and experimental analysis of more powerful algorithms for
supporting plan management capabilities in the PMA (Plan Management Agent). - In
particular, we developed algorithms for checking feasibility of proposed plan updates that
are two orders of magnitude faster than the previous state-of-the-art [8,9] ; we
constructed the first framework for dispatching plans with rich temporal constraints [2,3]
and we began work to increase the efficiency of assessing plan cost in context [7].

2. The adaptation of the PMA plan management agent to a grid-aware system, along with
the analysis of alternative Java-based methods for supporting mobile agents in grid-like
systems [4,5,6].

3. The development of initial techniques for using PMA algorithms to support outsourcing
in electronic communities [1].

2

By achieving the first goal, we have made it possible to design and implement individual agents
that are better suited to the dynamic, multi-agent environments that are the focus of the CoABS
effort. The second goal demonstrated that our prototype system could be integrated into the set
of software agents being developed for CoABS; it also led to results about that can impact the
design of future tools, like the CoABS grid, for managing suites of agents. Finally, our work on
the third goal points the way towards taking greater advantage of the techniques that we initially
developed to allow an agent to coordinate its own plans in a dynamic, multi-agent environments:
specifically, we show how an agent can use those same techniques to coordinate plans with other
agents in the environment.

Below, we provide a very brief discussion of each topic; we have attached our relevant papers,
which provide further detail.

Improved Plan Management Support in PMA.

One of the major objectives of this project was to continue the development and refinement of
plan-management algorithms. We made major progress in particular in algorithms for checking
the feasibility of proposed plan updates. Note that some of our work on this topic was supported
under the auspices of our DARPA TASK contract, #F30602-00-2-0621. Here we report on our
overall results, obtained by leveraging the work in the two projects.

One of the most efficient ways to achieve plan update is to merge new, partial plans into existing
sets of commitments, rather than attempting to replan from scratch. Indeed, plan merging is
central to managing plans in dynamic and uncertain environments, because in these environments
an agent may adopt a goal for a future activity, form a possibly incomplete plan for it, and then
consider, commit to, and plan for additional goals before completing — or possibly even beginning
— execution of the first plan. Thus, as time proceeds, the agent is continually forming plans for
new goals in the context of its existing goals and plans. A plan-management agent must help a
human in updating and maintaining his commitments.

Various approaches could be used to generate plans in the context of prior plans. A simple
approach would rely on traditional AI methods of planning for conjunctive goals. With this
approach, whenever the agent encountered a new goal G in a setting in which it already held
goals Gi,. . ., Gy, it would form a new planning problem for the conjoined goal GiA ... G, A G.
However, this approach has at serious problems—including computational inefficiency that
results from the failure to reuse previous computation. We have thus been investigating an
alternative approach, which involves holding fixed the plans for G;,. . ., Gs, and merging into
them a new plan for G. In our previous work, we developed an algorithm and implemented
system for plan merging that was much more powerful than previous approaches in that it
allowed for plans with conditional branches and a certain class of temporal constraints, namely
constraints that can be represented as simple temporal problems (STPs). The basic idea of our
earlier approach was to solve two constraint-satisfaction processing problems (CSPs) in an
interleaved fashion: the first modeled the plans being merged, and identified potential conflicts
between them, suggesting a candidate resolution, while the second was a temporal CSP that was
used to determine whether the suggested resolution was in fact temporally consistent. .

We designed and fully implemented a new system for plan merging, called Epilitis. Using
Epilitis, we can now perform plan merging on an even wider set of plans, allowing arbitrary
disjunctive temporal plans. Not only does this increase the expressive power of the approach,
but, surprisingly, it can have a potentially beneficial effect on plan merging, because typically

there are several alternative candidate resolutions to any conflict. For example, if one activity
should be performed sometime Friday between 9am and Spm, for a one to two hour duration, and
there is already a commitment to attend a meeting from 11am to noon, then the way to resolve the
conflict is to ensure that the first activity is begun either at 9 or sometime after noon. Such
resolutions—essentially additional constraints on the merged plan—need not be binary: there
may be many alternatives. In our previous approach, there was a need to jump between the two
CSP problems whenever one alternative failed. However, because we can now directly model
and reason about disjunctive constraints, we maintain and solve only a single CSP. Details can be
found in [8,9].

Once Epilitis was designed, we were able to conduct a thorough investigation of techniques for
speeding up its processing. Because Epilitis is performing constraint-satisfaction processing, we
were able to draw on a number of methods for CSP efficiency. More specifically, Epilitis is
solving a Disjunctive Temporal Problem (DTP), and we thus carefully analyzed the technigues
used in the prior DTP-solving work, determining which ones we most effective and then
analyzing their interactions to enable us to combine the best techniques. Integration of these
techniques was a challenging technical problem. We also added no-good learning, a pruning
strategy that had not previously been used in DTP-solving. Experimentation showed that no-
good learning was a particularly powerful tool for speed-up in plan-merging problems. As a
result of this work, we were able to achieve a two order-of-magnitude speed-up with Epilitis as
compared to the previous state-of-the-art DTP solver , TSAT. Again, more details of this work
can be found in [8,9].

In addition to our work on plan merging, we also investigated the question of how to dispatch
plans expressed as DTPs. Many agent systems must perform both planning and execution: they
include a plan deliberation component to produce plans that are then dispatched to an execution
component, or executive, which is responsible for the performance of the actions in the plan.
When plans have temporal constraints, dispatch may be non-trivial, and the system may include a
distinct dispatcher, which is responsible for ensuring that all temporal constraints are satisfied by
the executive. Previous research on dispatch has been restricted to plans with simple,
nondisjunctive temporal constraints. But plan-management systems dealing with plans
represented as DTPs must also be able to perform dispatch of plans with disjunctive constraints.
(Such systems do not, of course, executing the dispatched plans itself, but they must still be able
to perform dispatch so that they can provide appropriately timed reminders to the user.) We
identified four key algorithmic and complexity properties that must be satisfied by a dispatch
algorithm, and developed an algorithm for DTP dispatch that has these properties. See [2,3].

PMA for Mobile Agents.

A second major goal of this project was to develop a grid-aware version of PMA. We
successfully completed this task and reported on it, providing a demo, at the Aug. 2000 CoABS
Pl meeting. In follow-on work, we developed a web-based version of PMA, which allows for
anywhere-access of the system. Access to the system is available from Prof. Panos Chrysanthis

As part of this task, we also conducted a detailed experimental evaluation of alternative Java-
based methods for remote access to databases, such as the PMA plan database. The study
considered both RPC and non-RPC approaches. The evaluation was aimed at comparing both
performance (response time under different loads) and programmability (number of system calls
at the client and the server site). The results of these studies can have significant potential impact
on the design of advanced grid-like systems. The primary results are (1) best performance is not

- 3

always achievable with high programmability and low resource requirements, and (2) the mobile
agent technology needs to improve its programmability while giving particular emphasis in its
infrastructure. Further details, including quantification of these results, can be found in [4,5,6].

Outsourcing in Ageht Systems

The third component of the research addressed the question of how plan-management techniques
developed for PMA could be used to support outsourcing in electronic communities. More
specifically, we developed a novel approach to combining plan-management techniques such as
plan merging with workflow mechanisms, to enable automated outsourcing of tasks by individual
agents in an electronic community. Our method takes two workflow views, one representing a
service request and the other a service provision (an advertisement), with a mix of vital and
nonvital steps and a rich set of constraints, and returns a list of possible legal combinations, if any
exist. It then uses plan-merging techniques to find potential conflicts between the two workflows,
and to suggest additional constraints that can resolve the conflicts. In particular, we make use of
the DTP solving algorithm mentioned above to guarantee local as well as global plan consistency.
The solutions returned by the DTP-solver represent terms for the establishment of a new Virtual
Enterprise (VE), and can be evaluated by each side to determine which is most desirable. To
date, we have designed and provided specifications for such a system; full implementation and
experimental evaluation will be conducted in future research. See [1] for more discussion.

Publications supported by this Contract

1. A. Berfield, P. Chrysanthis, I. Tsamardinos, M. E. Pollack, and S. Banerjee, “A
Scheme for Integrating e-Services in Establishing Virtual Enterprises,” to appear in
12th IEEE Workshop on Research Issues in Data Engineering, Feb. 2002.

2. I Tsamardinos, M. E. Pollack, and P. Ganchev, “Flexible Dispatch of Disjunctive
Plans,” 6th European Conference on Planning, Oct. 2001.

3. P. Ganchev, “Flexibility Measures of Sets of Plans,” University of Pittsburgh
Intelligent Systems Program M.S. Project Report, June, 2001.

4. S. Papastavrou, P. K. Chrysanthis, G. Samaras, and E. Pitoura. “An Evaluation of the Java-
based Approaches to Web Database Access,” to appear in International Journal of
Cooperative Information Systems, 2002.

5. S. Papastavrou, P. K. Chrysanthis, G. Samaras, and E. Pitoura. “An Evaluation of the Java-
based Approaches to Web Database Access,” Proc. of IFCIS/VLDB Cooperative
Information Systems, Sept. 2000, pp. 102-113.

6. S. Papastavrou, P. K. Chrysanthis, G. Samaras, E. Pitoura. “A Survey of the Java based
Approaches for Web Database Access.” Proc. of the 10th IEEE Mediterranean
Electrotechnical Conference, May 2000.

7. S. Ramakrishnan, “Cost Assessment in Disjunctive Temporal Plans,” Technical Report,
University of Michigan, 2001.

8. 1. Tsamardinos, “Constraint-Based Temporal Reasoning Algorithms, with Applications
to Planning,” University of Pittsburgh Intelligent Systems Program Ph.D. dissertation,
Aug. 2001.

9. I Tsamardinos and M. E. Pollack, “Efficient Solution Techniques for Disjunctive
Temporal Problems,” in preparation.

12th IEEE Workshop on Research Issues in Data Engineering, 2002

A Scheme for Integrating E-Services in Establishing Virtual Enterprises*

Alan Berfield, Panos K. Chrysanthis
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260, USA
{alandale,panos} @cs.pitt.edu

Martha E. Pollack

Department of EE and Computer Science

University of Michigan
Ann Arbor, MI 48109, USA
pollackm@eecs.umich.edu

Abstract

An important aspect of Business to Business E-
Commerce is the agile Virtual Enterprise (VE). VEs are es-
tablished when existing enterprises dynamically form tem-
porary alliances, joining their business in order to share
their costs, skills and resources in supporting certain activ-
ities. Currently, existing enterprises use workflows to auto-
mate their operation and integrate their information systems
and human resources. Thus, the establishment of a VE has
been viewed as a problem of dynamically expanding and in-
tegrating workflows. In this paper, we present an approach
to combining workflows from different enterprises, using
techniques developed in the Artificial Intelligence literature
on planning. Our method takes two workflow views, one
representing a service request and the other a service provi-
sion (advertisement), with a mix of vital and nonvital steps
and a rich set of constraints, and returns a list of possible
legal combinations, if any exist. It then uses plan-merging
techniques to find potential conflicts between the two work-
flows, and to suggest additional constraints that can resolve
the conflicts. The returned solutions represent terms for the
establishment of a new VE, and can be evaluated by each
side to determine which is most desirable.

*This material is based upon work partially supported by NSF IIS-
9812532 and AFOSR F30602-00-0547 awards.

{0On Leave of Absence at Hewlett-Packard Laboratories, MS 1U-17,
Palo Alto, CA 94304, USA.

loannis Tsamardinos
Intelligent Systems Program
University of Pittsburgh
Pittsburgh, PA 15260, USA
tsamard @cs.pitt.edu

Sujata Banerjeet
Info. Sci. & Telecom. Dept.
University of Pittsburgh
Pittsburgh, PA 15260, USA
sujata@tele.pitt.edu

1. Introduction and Motivation

Electronic Commerce is expanding from the simple no-
tion of E-Store to the notion of Virtual Enterprises (VEs)
where existing enterprises dynamically form temporary al-
liances, joining their business in order to share their costs,
skills and resources in supporting certain activities. An ex-
ample of a VE in the context of the travel industry would be
the collaboration of different travel agents, airliners, ground
transportation services, hotels, restaurants and entertain-
ment services in order to set up and manage a tourism trip.

Many enterprises use workflows to automate their oper-
ation and integrate their information systems and human re-
sources [19]. A workflow consists of a set of activities (also
called rasks) that need to be executed according to given
temporal constraints over a combination of heterogeneous
database systems and legacy systems. A major challenge
has been the development of workflow management systems
(e.g., [9, 5, 13, 1]). Several techniques have been devel-
oped for correct and reliable specification, execution, and
monitoring of workflows and the involved external support.
Many of these techniques are extensions of those in transac-
tion processing in databases combined with general middle-
ware services such as those found in CORBA/DCOM and
more recently in Java-based services such as Jimi from Sun
and E*Speak from HP.

Very recently the idea of the use of workflows to sup-
port multi-organizational processes that form a virtual en-
terpnise has attracted some attention [10, 6, 8]. The estab-
lishment of a VE can be seen as a problem of dynamically
expanding and integrating workflows in decentralized, au-
tonomous and interacting workflow management systems

[2, 7, 12]. During the establishment of a VE, a distributed,
multi-organizational workflow emerges from the dynamic
merging and reconfiguration of workflows representing E-
Services in the parlicipating enterprises. In our previous
work, we looked at using mobile agents as a platform for
advertising, negotiating, and exchanging control informa-
tion about E-Services for the establishment of VE’s [6]. In
this paper, we focus on a method for verifying that the VE is
compatible with workflows in the participating enterprises.

The contribution of this paper is a new method for es-
tablishing VEs, involving both the generation of outsourc-
ing requests and the validation of constraints. The scheme
incorporates techniques developed in the Artificial Intelli-
gence (Al) literature on planning, specifically algorithms
for merging temporal plans. Within the Al literature, a plan
is a collection of steps (i.c., tasks), with causal, temporal,
and resource constraints. A plan is intended to represent a
course of action that will achieve a specified goal when ex-
ecuted beginning in a specified initial state. Critical to the
notion of plans is that of causal structure: the steps in each
plan are specified in terms of their preconditions and effects,
and the plan records information about which steps cause
(or establish) the preconditions of other steps. When merg-
ing together two plans, it is necessary not only to check that
there are no violations of the temporal and resource con-
straints of the plans being merged, but also to ensure that
the necessary causal relations are maintained in the merged
plan. We argue in this paper that similar consistency re-
quirements also hold when a VE is formed.

In the next section, we review the basic structures used in
workflows. In particular, we describe a class of workflows
that include specifications of preconditions and effects. In
Section 3, we describe a VE and its components. Section 4
describes our detailed scheme for establishing such a VE.
Section 5 deals with the current state of our implementation.
We conclude with a summary in Section 6.

2. Workflow Model

Workflows encode tasks and the relationships among
them. Workflow specification formalisms generally provide
a small set of basic control flow relationships among tasks.
Typically there are four such relationships: OR-split, AND-
split, OR-join and AND-join. The first two relationships are
used to specify branching decisions in a workflow whereas
the remaining two specify points where activities converge
to initiate the next activity within a workflow. An OR-join
specifies alternatives whereas AND-join specifies required
activities.

While the relations just listed provide information about
the relative ordering of the tasks in a given workflow, to
handle the problem of forming Virtual Enterprises, it is also
necessary for the workflow to model a significant amount

of information about each task. Thus, we will assume an
enriched model of workflows in which each task has the
following information associated with it;

e Pre- and postconditions, which specify what must be
true before a task can be executed, and what will be
made true as a result of the task’s performance.

e Causal links, which relate each task that establishes a
condition (listed in its postconditions) to the task that
requires it (listed in its preconditions).

e In- and out-parameters, which are used in the evalu-
ation of preconditions and postconditions. They carry
information and engender data flow during execution.
For example, a credit card number could be an in-
parameter to a “pay for dinner” task.

o Temporal Constraints that specify the earliest and lat-
est start and end times of a task, as well as the minimal
and maximal durations of the task. They can be abso-
lute times or relative to the execution of other tasks.

e Resource Constraints, which specify the equipment,
material, or agent resources required for the task.

e Significance, which indicates whether the task is vi-
tal to the workflow and therefore must be executed,
or whether it is nonvital, and need only be executed if
feasible [6].

s Cost, which represents the price of the task.

Other information may also be associated with each task,
such as rules for exception handling should the task fail.
However, we will not be concerned with these types of in-
formation in the current paper.

As shown in Figure 1, a workflow can be graphically
depicted with nodes (thick boxes) denoting activities and
arrows denoting precedence. The figure represents a busi-
ness trip from [15]. Shaded nodes indicate vital activities
that must be completed to ensure proper execution. Nodes
with a pair of dashed lines leading to another workflow are
hierarchical activities: those that can be decomposed into
workflows themselves. AND-splits and AND-joins are rep-
resented implicitly when two or more causal links emanate
or arrive at a node respectively. To represent OR-splits we
insert a conditional node that creates two new execution
contexts (branches), ¢.g., one for success and one for failure
(in Figure 1, these are shown as nodes with edges labeled S
and F). Tasks are executed only when their context is true.
The OR-join is represented implicitly when the context S or
F disappears from the labels of subsequent edges.

We are assuming a typical Workflow Management Sys-
tem (WIMS) architecture with our enriched model of work-
flows. Specifically, a WIMS consists of the following three
basic components:

£ oA Foom Hot Avaitable

Check Maxim

Figure 1. Trip Plan Workflow

o Workflow Schema Library, which contains workflow
schemas or templates and generic constraints.

o WfMS Services, functions provided by the WEMS for
managing workflows. These include specifying work-
flows, verifying their correctness, instantiating and
scheduling them, executing them, and monitoring their
execution.

o Workflow Repository, which contains all instantiated
and scheduled workflows, i.¢., the workflows the busi-
ness is committed to performing.

3. Forming Virtual Enterprises

A Virtual Enterprise (VE) is formed when a business de-
cides to commit to a new workflow, while outsourcing some
of the work involved in that workflow. Consider the exam-
ple of Jane Smith, an executive planning a trip to Vienna.
She gets in touch with a travel agency to arrange the trip.
She decides that while she 1s there she would like to attend
an opera and tour the Art Museum. This adds the nonvital
nodes “buy opera ticket” and “buy museum tour ticket” to
the trip schema (Figure 1). The travel agency lacks connec-
tions with the entertainment/opera industry, so is unable to
purchase such tickets. In order to satisfy the customer, they
decide to outsource those tasks.

The above example represents a common reason for out-
sourcing. When a business receives a new request from a
client, it takes the form of an instantiated workflow schema
from its Workflow Schema Library. The client may have
added constraints and/or customized the schema by adding

new nodes, which could represent extra or special activi-
ties and opportunities. The business may select some of the
tasks from the workflow to outsource and/or it may select
some of the open conditions from the workflow and out-
source their achievement. This outsourcing establishes a
VE.

In our VE workflow specification, we use the notion of
views to express outsourcing. Any subgraph of a workflow
graph defines a segment or a view of the workflow. For-
mally, a workflow view can be defined as a projection on the
graph based on some criteria (projection{work flow, <
criteria >)). For example, consider the view that includes
all and only the vital nodes of the full workflow. The re-
quirement that nodes be vital is the criteria used by the pro-
jection.

VitalView = projection(work flow, {a |

a € work flow A a.significance = vital})

The nodes in a view retain all information of their originals,
including all constraints. However, because all constraints
are maintained, a view may have nodes that have temporal
constraints referring to other nodes not actually in the view,
and may also have broken causal links possibly resulting in
unsatisfied preconditions (i.¢., anode in the view could have
a precondition that was established by some node in the full
workflow that is not in the view).

A workflow view can represent any activity performed
by a service provider on behalf of a service requester. Con-
sequently, workflow views can be used to express service
requests or service provision (advertisement). In our pro-
posed system, it is these workflow views that are being re-
quested and advertised.

In our scheme, a request has the following structure:

Requests: Rq = (P, G, RW)
where P = Service Requester Profile,
G = set of Goals,
RW = Requested Workflow View

The profile can contain various information about the re-
quester, such as name, site identification, credentials, etc..
It may also contain a target price range. The set of goals
is a list of all goals (postconditions) that need to be ac-
complished. The workflow view captures all temporal con-
straints and resource usage issues involved.

In the example above, the request includes the profile of
the travel agency, the goals “opera ticket purchased” and
“museum ticket purchased”, and a view with two nodes that
indicate times by which the tickets must be purchased.

A requested workflow view can be potentially aug-
mented during negotiation to match the service provider’s
workflow, reflecting opportunities, omitted activities and
data. During a negotiation we may decompose the required
view into several views and seek other service providers for
the other parts of the view. In this way, a single initial re-
quest may lead to the establishment of a VE comprising
multiple enterprises. A VE comprising multiple enterprises
can also result when a service provider’s view includes out-
sourcing. We will elaborate on this in the next section.

The structure of an advertisement is the same as that of a
request.

Advertisements: Ad = (P, G, AW)
where P = Service Provider Profile,
G = set of Goals,
AW = Advertised Workflow View

It includes a profile, the set of goals accomplished, and a
workflow view encompassing constraints. The profile, in
addition to other information, may contain cost information
for the workflow as a whole, such as minimum cost, maxi-
mum cost (cost with all nonvital steps), or both. The list of
goals indicates what the advertised workflow actually does,
and may also include goals associated with nonvital activ-
ities. Such advertisements will typically be stored in the
databases of trading servers. Each provider may have a set
of advertisements with the same goals but with a different
associated workflow view (i.e., different constraints).

To return to our example, an advertisement that would be
of interest to the travel agency would be for a business that
specializes in Vienna cultural events, including opera. The
single goal “opera ticket purchased” is accomplished. Its
workflow view includes the tasks “contact opera houses”,
“read current reviews”, and “purchase ticket.”

The VE environment is a distributed environment. It
consists of multiple businesses, acting as requesters and
providers, using services provided by negotiation areas or
trading places. The trading places could contain databases

of advertisements and could provide services allowing busi-
nesses to both place advertisements and to find advertise-
ments that meet their goals. Standardization of represen-
tation is clearly required (particularly of preconditions, ef-
fects, and goals), and could be enforced by the trading
servers. A portion of this environment is shown in Figure 2.
Two negotiation areas are depicted, as well as four busi-
nesses’ WIMS. Shaded nodes again represent vital activi-
ties, and an advertised hierarchical Opera activity is shown
partially expanded.

3.1. Commitment and Outsourcing Request
Generation

In order to commit a new, possibly customized workflow,
a WIMS needs to make sure that it is schedulable. A work-
flow is schedulable if it is correct, complete, and compatible
with existing commitments.

Definition 1 Workflow Correctness: A workflow is cor- -
rect if and only if

1. it has no conflicting temporal or resource constraints,

2. for each goal/precondition P, there is a task that
achieves P (the producer task), and it is ordered be-
fore the task that requires it (the consumer task), and

3. for each goal/precondition F, no task that may negate
P can possibly be ordered in between the producer and
the consumer.

This notion of correctness is important as only correct
workflows can possibly be executed. Note that some work-
flows may contain preconditions that are assumed to be es-
tablished independently of the workflow itself. We will call
such preconditions open with respect to the workflow. A
simple example of such an open precondition is a work-
flow for renting a car that assumes the precondition of hav-
ing a driver’s license. Workflows with such open precondi-
tions are incorrect until they have been combined with other
workflows that establish all open preconditions.

Definition 2 Workflow Completeness: A complete work-
flow is a workflow that specifies all tasks needed to achieve
its goals and preconditions.

Definition 3 Workflow Compatibility: A workflow is
compatible with another if none of its nodes conflict with
any of the other’s (and vice versa).

This means that the temporal constraints, resource usage,
and postconditions of its nodes do not prevent the execution
of the nodes in the other workflow (though they may place
limits on when those nodes can be executed). So for ex-
ample, a compatibility conflict between workflows arises if

Requester

Negotistion Arca

Provider

e EQUESTEY . Provid
Requester Negotiation Area Loxiceer
'WF-Scherna
1,

WE-S N(advertised)
WIMS WIMS
Services Services

WF WF

Repository Repository

Figure 2. VE Environment

two tasks that use the same resource (e.g., equipment) are
set to execute at the same time. Another example is a task
that dictates that a robot move to the printing room for the
purpose of getting a faxed itinerary, which conflicts with a
task that moves the robot to another room that could be ex-
ecuted after going to the printing room but before fetching
the fax.

An alternative definition of the compatibility of two
workflows is that the workflow resulting from their union
is correct. We propose the notion of a merge with the
Workflow Repository for determining the compatibility of
a workflow with the currently scheduled workflows (in the
Repository). If the merge is successful, the new workflow
can be committed and its execution enabled. If the merge is
unsuccessful, the new workflow is not compatible and the
business may consider outsourcing.

An effective merging process will check whether the
above requirements (correct, complete, and compatible) are
met, and will indicate where problems lie: what nodes are
conflicting with others, which have unsatisfied (open) pre-
conditions, or which the business lacks the necessary ex-
pertise (i.e., roles as resources) to accomplish. It may also
suggest additional temporal or resource constraints that are
required to ensure that they are met. However, it’s desirable
to impose a minimal set of extra constraints, i.., to provide
a least-commitment response, as this allows increased flexi-
bility to respond to changes that may arise during execution.

The merge process can also be used to identify and con-
struct outsourcing requests. In the event of an unsuccessful
merge, any nodes from the new view that are indicated as
problems by the merging process (those having irresolvable

resource conflicts with existing commitments) will form
part of the requested workflow view VRg by extracting them
from the full workflow using projection. In addition to these
nodes, for each open precondition in the new view not sat-
isfied by the existing commitments (such preconditions will
be found by the merge process), a new place-holder node is
added to the view. Each of these new nodes represents a task
that accomplishes one of the open preconditions, i.e., it has
one of the open preconditions set as its postcondition, and
any associated temporal and causal links are applied. The
complete set of postconditions of every node in VRg make
up the goal set of the request, . In the simplest case VRq
would be a single node, with associated constraints. More
complex cases would involve multiple nodes and richer con-
straints.

Recall that projected nodes maintain all constraints and
conditions they had in the parent workfiow, and may there-
fore include unsatisfied preconditions and temporal con-
straints referring to nodes not in the view. This is not really
a problem as they will be satisfied by non-outsourced nodes.
The preconditions, along with in-parameters, represent the
input to the outsourced view. Goals and out-parameters of
the outsourced nodes represent the output.

4. Outsourcing Scheme

In this section, we discuss in detail the steps for outsourc-
ing and establishing a VE.

Let R be a Requester and P be a set of providers
{P1, ..., Pn}. R has a set of workflows to which it is al-
ready committed, and which it stores in the WF Repository;

10

let us call them CR (commitment workflows at requester).
Similarly, each P; has a set of workflows already committed
to; let us call them C'P(7).

Let Rq = (R, G,VRg) be a request of R for outsourcing
with goals G = {G}, ...G,,} and workflow view VRq. Each
P; can provide a set of alternative workflow views A(F;)
for achieving one or more G; of Rg.

The problem of outsourcing is how to pick a set of work-
flow views S from the A(P;) of one or more P; so that the
combined set satisfies Rg and merges with CR, and each
A(FP;) in it merges with its provider’s C' P (7). Specifically,
such a set achieves all goals of the outsourced workflow, all
temporal constraints are satisfiable, there are no resource
conflicts, and for every precondition of every workflow ac-
tivity in CR and C P (%) there exists a causal dependency that
ensures that the precondition will be met.

Formally, we want a set § = wf; U wfo U wfz U..U
wfp, wherewf; € |J; A(F:), j = 1,...,nsuch that

e postconditions(S) D G
(all outsourcing goals are met)
o Ywf, € S postconditions(wf)NG # ¢
(each workflow achieves at least one goal)
e compatible(S, CR)
(S is compatible with the requester’s commitments)
e Ywf, € A(Py) compatible(wf;,CP(y))
(each alternative workflow is compatible with its
provider’s commitments)

The above suggests a solution that has three phases:

1. Finding a set of alternative workflows that satisfy Rg
(Terms for the Establishment of a VE)
2. Checking for the satisfaction of C P(7)
(Providers Validation of Terms and E-Service Bids)
3. Check for the satisfaction of R
(E-Service Bid Evaluation)

We elaborate on these phases in the next subsections.
4.1. Phase 1: Terms for the Establishment of a VE

As mentioned previously, we assume in this paper that
finding alternative workflow views that satisfy a request Rq
is a service provided by trading servers. Each alternative
view represents a term for the establishment of a VE. Dur-
ing this first phase the sets A(P;) of alternative workflow
views are generated. These views accomplish the goals G
of Rq while not violating any of its constraints. For the sake
of simplicity, we will assume in the rest of our discussion
that there is only one trading server.

The service searches the database of the trading server,
looking for advertisements that meet some or all of the re-
quested goals. Which advertisements are examined first de-
pends on the selection conditions being used. One such

condition would include the desirability of first consider-
ing those that accomplish all goals, and only considering
multiple, partial matches when all such are found. For each
advertisement found and selected, the server must finally
determine if it or any of its alternatives (involving different
combinations of nonvital nodes) can meet the constraints of
the request. This process continues until all advertisements
that meet any goals have been examined, or some termina-
tion criteria are met (such as a deadline for search time).

For the detailed explanation, we will consider one such
advertisement found and selected by the trading server that
accomplishes all goals in G; let us call it Ad1.

As shown in Figure 3, the service must determine if Ad1
will satisfy the constraints in the request’s workflow view
Ryg. To do this, Ad1 and Rgq are first stripped down to only
vital nodes using projection. Temporal constraints of the vi-
tal nodes may need to be adjusted, as any referring to non-
vital nodes will be invalid. For any node that has such a
constraint, there are four possible situations:

1. The nonvital node referred to has no constraints on its
time! : the constraint on the vital node can be dropped.

2. The nonvital node has an absolute time: that time can
be used.

3. The nonvital node has a time relative to some other
vital node: the reference to that node can be used.

4. The nonvital node has a time relative to some other
nonvital node: that nonvital must be searched in the
same fashion for a time or vital node reference.

It may be beneficial to instead store such alternative con-
straints with the vital nodes in order to save computational
time, though the number of nonvital nodes is likely to be
small.

Next the service attempts to bind the constraints of the
vital-only view of Rg (called RqV in the figure) to the
stripped view of Adl (AdV in the figure). Binding adds
the constraints of the requested nodes to the corresponding
nodes in the advertisement (those that have the same post-
conditions). If AdV cannot support the added constraints
(because they conflict with existing ones), the bind fails and
the function must backtrack to find a different advertise-
ment. Otherwise, the new bound advertised view BV is
added to A(P;), where P; is the provider of BV, and the
search continues for its variants that include nonvital nodes.

The search for variants of BV considers combinations of
BV and nonvital nodes from the full Ad1 and Rg. This can
be achieved by the function addNodes, that adds a group of
nodes to the workflow BV, restoring any modified temporal
constraints that referred to them. This is basically a merge
process. The addNodes function fails and returns null if the

1By “time” we mean either start or end time of the task, depending on
which the specific temporal constraint refers to.

11

resulting view is incorrect (i.., the new nodes cannot be
added without violating constraints). If the function does
not fail, the resulting view is added to A(F;).

It is interesting to point out that there is another possible
method for this search: working in the other direction, start-
ing by adding back all nonvitals and then removing them to
find correct alternatives. It is not clear which approach is
better, but we intend to investigate this in future work.

In either case, the search will proceed until all possible
combinations have been attempted or some other termina-
tion criteria have been reached. As most views are expected
to have 3 or fewer nonvital steps, finding all possible com-
binations is not likely to be impractical. Once the search
has finished, A(F;) contains every alternative workflow so-
lution for the workflow Ad1.

The service generates a set A(P;) for each P; with at
least one selected advertisement. The A(FP;)’s created in
this fashion are now sent out to their respective provider for
validation.

4.2. Phase 2: Providers Validation of Terms and
E-Service Bids

The second phase of the outsourcing takes place at the
providers of the advertisements. Each P; receives the A(P;)
generated for it in the previous phase, and must determine
whether any of the workflow views in A{ P;) are compatible
with its C P(Z). Each alternative basically represents a po-
tential new incoming workflow to be scheduled. Recall that
such scheduling can be accomplished using the merge pro-
cess. Thus, the provider attempts to merge each alternative
with C P(¢) independently. Any that fail are removed from
A(P;). Those that succeed can be kept to form the basis for
the service bid. Of course, if A(P;) is empty at the end of
this phase, then none of the views were compatible with the
provider’s commitments. :

To generate the full service bid, each view remaining in
A(F;) could possibly be expanded into multiple views if
the provider wishes to add additional nonvital nodes (repre-
senting special offers or bonuses). Note that such additions
would likely increase cost, but would possibly also increase
value. The provider may also rank the solutions in order of
preference or cost to help the later decision process.

Each provider sends its service bid to the requester to be
evaluated in the next phase.

4.3. Phase 3: E-Service Bid Evaluation

In the third phase, the requester evaluates and selects an
E-Service bid. Of the views in the service bids returned
by the providers, the requester must determine which are
compatible with its CR. This is done in exactly the same
fashion as with the providers.

Each service bid in the returned list is combined with the
rest of the original workflow to form a complete solution.
For each solution, a merge is attempted with the commit-
ted workflows. Any that fail to merge are discarded. Those
that successfully merge are correct views that each accom-
plish the outsourcing and that are compatible with both the
provider’s and requester’s previous commitments.

The requester may then evaluate these remaining views
to make a final decision as to which one will be used, which
likely involves cost comparisons.

4.4. Multiple Partial-Solution Views

In the previous discussion, we assumed the simplest case
where there exist advertised views that accomplish all the
goals of the request. However, in many cases there may
be no single advertisements that accomplish them all. This
would require views from multiple advertisements to be
combined in order to meet the requester’s needs. In order to
handle these cases, the described first and third phases need
to be enhanced.

For example, in Phase 1, the search for alternatives must
also search for combinations of advertisements that accom-
plish all goals. The merge process can be used again to ver-
ify that these combinations of advertisements are compat-
ible with each other in addition to meeting the constraints
of the request. For combined views belonging to a sin-
gle provider, the combination (and its alternatives involving
nonvital nodes) are grouped together as a single view.

The requester in Phase 3 must be aware that returned
views do not necessarily accomplish all goals. Any E-
Service bids that only satisfy some of the goals must be
combined with other returned views to form cormplete solu-
tions.

5. Implementation

In our previous work, we proposed to use mobile agents
as a platform for establishing VE'’s [6]. Our goal is to im-
plement our scheme described in the previous section on
this platform. The idea is to use mobile agents to per-
form the phases of the scheme. The requester dispatches an
agent with its request. The agent visits trading servers, and
spawns copies of itself to deliver alternatives to different
providers. It then gathers all returned service bids together
and delivers the results back to the requester.

A core concept in our scheme for integrating E-Services
is the merge process. It is this process that verifics whether
or not different workflow views are compatible with each
other. It is also responsible for adding nonvital nodes to
views and verifying that a view is compatible with a busi-
ness’ existing workflow repository. The merge process can
even be used to generate the outsourcing requests.

12

Repeat
e Adl = Ad € DB | < selection conditions >

BV = bind(AdV, RqV)

Repeat

— Bz = addNodes(BV, Nodes)
~ IfBz # null - A(P;) = A(P;)U Bz

e AdV = projection(Adl, {a |a € Adl A a.significance = vital})

e RqV = projection{Rq, {a | a € Rgq A a.significance = vital})

— Nodes = projection(Adl, selected nonvital € Adl) U projection(Ry, selected nonvital € Ryq)

¢ Until all combinations of nonvitals found or termination criteria met

Until all Ads found that meet < selection conditions > or termination criteria met

Figure 3. Service For VE Terms

Merging is not a trivial problem. It can be formulated
as a Constraint Satisfaction Problem or CSP, with tem-
poral features. The process must consider temporal con-
straints, resource usage, and causal links (preconditions and
effects). There has been a great deal of research done on
similar problems by the Artificial Intelligence community
[14, 17, 20]. A number of formalizations have been de-
veloped for variations with more or less expressivity. The
two that most closely match our problem are the Disjunctive
Temporal Problem (DTP) and the Conditional Disjunctive
Temporal Problem (CDTP).

For solving DTPs we have developed and implemented
a new algorithm called Epilitis [16], along with algorithms
that convert CDTPs to DTPs so that they may be solved by
it as well. Epilitis builds on plan merging techniques used
in a tool called PMA (Plan Management Agent) [18]. Epili-
1is integrates a number of techniques for pruning the search
space, some of which are Conflict Directed Backjumping,
Removal of Subsumed Variables, Semantic Branching, and
no-good learning. Epilitis is currently the most efficient al-
_ gonthm for solving such problems, as experimental results
have shown that it is two orders of magnitude faster than
the previous state-of-the-art solver, on synthetic benchmark
problems.

In the prototype system we are currently developing, we
will use Epilitis for the merging process at the WfMS and
the trading servers. The representation that Epilitis expects
is nearly identical to our enhanced model of workflows; the
mapping between the two is trivial. Merging with Epilitis
has all the properties discussed in Section 3. Any conflicting
tasks are identified with explanation, and a minimal number

of constraints are added. Plans with disjunctive temporal
constraints are supported (for added flexibility), and duplhi-
cate nodes can be identified and pruned/combined.

Epilitis does not support the notion of significance (vi-
tal vs. nonvital tasks). However these are implemented
in the higher-level layer that performs the phases of our
scheme. Only this layer is aware of the vital/nonvital dis-
tinction. (This is the cause of some of the complexity in
the search for alternatives, as all the different combinations
of nonvitals must be attempted separately.) This layer also
serves to interface Epilitis with a relational DBMS using
Microsoft Access and MySQL that will be used to imple-
ment the Workflow Repositories.

The current version of Epilitis is written in LISP, but us-
ing JLinker we have interfaced it to the rest of our prototype
which is being developed in Java. The new version of Epili-
tis currently being developed will be in Java as well.

6. Conclusions

We are concerned with integrating E-Services for the es-
tablishment of a VE, where such services are represented
with workflows. We have therefore created algorithms that
make use of existing plan merging and temporal reasoning
algorithms from the Al literature. Our scheme is sound, in
that the workflows it returns as possible merge candidates
are guaranteed to be correct. It is also complete, in that it
will find all such candidates, given sufficient time. It further
ensures that the merge candidates are compatible with all
businesses involved in the VE. It can create the outsourcing
requests based on identified conflicts, handle any number of

13

nodes and workflows to be outsourced, and is flexible in that
it can build a VE using multiple providers, each with their
own set of constraints. Our scheme also takes into consider-
ation that workflows have both vital and nonvital steps, and
appropriately considers them in its search.

In our proposed system, the merging process is built with
existing Al algorithms. The specific algorithm, Epilitis, is
the best algorithm available at this time. It has been imple-
mented and is a fully functional and working plan merging
tool. Currently we are developing our prototype system.
Our goal is to evaluate its performance in terms of speed
and memory usage. Another area we intend to explore is
its use as a plan/workflow repair system that would replace
broken or invalidated nodes or views with alternatives, pos-
sibly located in different databases on various machines.

Recently, there have been a variety of platforms devel-
oped with business to business E-services and Virtual En-
terprises in mind. E*speak [3] from HP, VorteXML [4], and
CrossFlow [11] are examples. These systems provide vari-
ous features for managing and monitoring VE’s, along with
some standards for communication. Such systems could
potentially be augmented or used conjunctively with our
scheme for automated VE establishment. We will investi-
gate such possibilities as part of our future work.

References

[1] Alonso G., D. Agrawal, A. El Abbadi and C. Mohan.
Functionalities and Limitations of Current Workflow
Systems. IEEE Expert, 12(5), 1997.

[2] Casati F, S. Cen, B. Pernici and G. Pozzi. Workflow
Evolution, Data & Knowledge Engineering, 24(3):
211-238, 1998.

{3] Casati F. and M. Shan. Definition, Execution, Analy-
sis, and Optimization of Composite E-Services. Bul-
Tetin of the Technical Committee on Data Engineering,
24(1):30-35, 2001.

[4] Christophides V., R. Hull, A. Kumar, and J. Simeon.
Workflow Mediation using VorteXML.. Bulletin of the
Technical Committee on Data Engineering, 24(1):41-
46, 2001.

[5} Chrysanthis P. K.. Guest Editor’s Introduction to Spe-
cial Issue on Workflow Systems. Distributed Systems
Engineering, 3(4):211-212, 1996.

[6] Chrysanthis P, T. Znati, S. Banerjee, S. Chang. Es-
tablishing Virtual Enterprises by means of Mobile
Agents. Research Issues in Data Engineering, 1999.

[7] Cichocki A. and M. Rusinkiewicz. Migrating Work-
flows. Workflow Management Systems and Interoper-
abiliry, A Dogac et al. (Eds)Springer Verlag, Series F,
Vol 164, pp. 339-355, 1998.

[8] Davulcu H., M. Kifer, L. R. Pokorny, C. R. Ramakr-
ishnan, I. V. Ramakrishnan, and S. Dawson. Model-
ing and Analysis of Interactions in Virtual Enterprises.
Research Issues in Data Engineering, 1999.

[9] Georgakopoulos D., M. Hornick and A. Sheth. “An
Overview of Workflow Management: From Process
Modeling to Workflow Automation Infrastructure.”
Distributed and Parallel Databases, 3(2), 1995.

[10] Georgakopoulos D., H. Sinha, K. Huff and B. Hur-
witz. “Monitoring Multi-organizational Processes.”
Proc. of the 1ith Int’l Conf. on Parallel and Dis-
tributed Computing Systems, pp. 75-80, 1998.

[11] Grefen P, XK. Aberer, H. Ludwig, and Y. Hoffner.
CrossFlow: Cross-Organizational Workflow Manage-
ment for Service Outsourcing in Dynamic Virtual En-
terprises. Bulletin of the Technical Committee on Data
Engineering, 24(1):53~58, 2001.

[12] Han Y. and A. Sheth. On Adaptive Workflow Model-
ing. Proc. of the 4th Int’l Conf. on Information Systems
Analysis and Synthesis, pp. 108-116, 1998

[13] Jablonski S. et al. External and Internal Support Ser-
vices in Workflow Management Systems. Proc. of the
11th Int’l Conf. on Parallel and Distributed Comput-
ing Systems, pp. 81-86, 1998.

[14] V. Kumar. Algorithms for Constraint-Satisfaction
Problems: A Survey. Al Magazine, 13(1):32-44,
1992.

[15] Ramamritham K. and P. K. Chrysanthis. Advances
in Concurrency Control and Transaction Processing,
IEEE Computer Society Press, 1997.

[16] Tsamardinos I. Constraint-Based Temporal Reason-
ing Algorithms with Applications to Planning. Ph.D.
Thesis. University of Pittsburgh Intelligent Systems
Program, 2001

[17] Tsamardinos 1., M. E. Pollack, et al. Merging Plans
with Quantitative Temporal Constraints, Temporally
Extended Actions, and Conditional Branches. Artifi-
cial Intelligence Planning and Scheduling (AIPS’00),
Breckenridge, Colorado, USA, 2000

[18] Tsamardinos I., M.E. Pollack, et al. Adjustable Au-
tonomy for a Plan Management Agent. AAAI Spring
Symposium on Adjustable Agents., 1999.

[19] Workflow Management Coalition, Technology &
Glossary, Document Number WFMC-TC-1011, June
1996.

[20] Q. Yang. Intelligent Planning: A Decomposition and
Abstraction Based Approach. Springer, 1997.

14

6th European Conference on Planning, 2001

Lecture Notes in Computer Science

Flexible Dispatch of Disjunctive Plans

Ioannis Tsamardinos! Martha E. Pollack?, and Philip Ganchev!

! Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA 15260 USA
tsamard@eecs.umich.edu, ganchev@cs.pitt.edu
2 Department of Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 48103 USA
pellackm@eecs.umich.edu

Abstract. Many systems are designed to perform both planning and execution:
they include a plan deliberation component to produce plans that are then dis-
patched to an execution component, or executive, which is responsible for the
performance of the actions in the plan. When the plans have temporal con-
straints, dispatch may be non-frivial, and the system may include a distinct dis-
patcher, which is responsible for ensuring that all temporal constraints are satis-
fied by the executive. Prior work on dispatch has focused on plans that can be
expressed as Simple Temporal Problems (STPs). In this paper, we sketch a dis-
patch algorithm that is applicable to a much broader set of plans, namely those
that can be cast as Disjunctive Temporal Problems (DTPs), and we identify four
key properties of the algorithm.

1 Introduction

Many systems are designed to perform both planning and execution: they include a
plan deliberation component to produce plans that are then dispatched to an execution
component, or executive, which is responsible for the performance of the actions in
the plan. When the plans have temporal constraints, dispatch may be non-trivial, and
the system may include a distinct dispatcher, which is responsible for ensuring that all
temporal constraints are satisfied by the executive. Prior work on plan dispatch [1-3]
has focused on plans that can be represented as Simple Temporal Problems (STP) [4].
In this paper, we sketch a dispatch algorithm that is applicable to a much broader set
of plans, those that can be cast as Disjunctive Temporal Problems (DTPs), and iden-
tify four key properties of the algorithm.

2 Disjunctive Temporal Problems

Definition. A Disjunctive Temporal Problem (DTP) is a constraint satisfaction
problem <V, C>, where V is a set of variables (or nodes) whose domains are the real
numbers, and C is a set of disjunctive constraints of the form C;r I; <x; -y, <u; v

15

oV 1, <X, — ¥, < u,, such that for 1<i <n, x; and y; are both members of V, and [;, u;
are real numbers. An exact solution to a DTP is an assignment to each variable in V
satistying all the constraints in C. If a DTP has at least one exact solution, it is consis-
tent.

A DTP can be seen as encoding a collection of alternative Simple Temporal Prob-
lems (STPs). To see this, note that each constraint in a DTP is a disjunction of one or
more STP-style inequalities. Let C; be the j-th disjunct of the i-the constraint of the
DTP. If we select one disjunct Cj; from each constraint C;, then the set of selected
disjuncts forms an STP, which we will call a component STP of a given DTP. It is
casy to see that a DTP D is consistent if and only if it contains at least one consistent
component STP. Moreover, any solution to a consistent component STP of D is also
clearly an exact solution to D itself.

Definition. A(n inexact) solution to a DTP is a consistent component STP of it. The
solution set for a DTP is the set of all its solutions.

When we speak of a solution to a DTP, we shall mean an inexact solution. Plans can
be cast as DTPs by including variables for the start and end points of each action.

3 A Dispatch Example

Consider a very simple example of a plan with three actions, P, Q, and R. (For presen-
tational simplicity, we assume each action is instantaneous and thus represented by a
single node). P must occur in the interval [5,10] and Q in the interval [15,20]; P and
Q must be separated by at least 6 time units; and R must be performed either the inter-
val [11,12] or [21,22]. The plan as described can be represented as the following
DTP: {C1. S<SP-TR<10v1IS<P-TR<20; C2. 5£Q-TR<10v15<Q-
TR<20; C3. 6<P-Q<Loov6sQ~-P<oo; C4 11SR-TRL12Vv2ILR-
TR < 22}. (Note that TR, the time reference point, denotes an arbitrary starting
point.) This DTP has four (inexact) solutions: { STP,: ¢y, €22, C32, Cat; STP3: ¢y,
C22, C32, €420 STP3: €13, Ca1, €31, €4, STPy: Cp2, €21, €31, Ca2)e

Definition: An STP variable x is enabled if and only if all the events that are con-
strained to occur before it have already been executed. A DTP variable x is enabled if
and only if it has a consistent component STP in which x is enabled.

In STP,, both P and R are initially enabled, while in STP; and STP,, Q is initially
enabled. Hence, all three actions are initially enabled for the DTP. Enablement is a
necessary but not sufficient condition for execution: an action must also be live, in the
sense that the temporal constraints pertaining to its clock time of execution are satis-
fied. In the current example, none of the actions are initially live. The first action to
become live is P, at ime 5. An action is live during its time window.

16

Definition: The time window of an STP variable x is a pair [Lu] such that /< x - TR
<u, andforall I’, u’ suchthat’< x~TR<u’, I’<] and u <u’. Given a set of
consistent component STPs for a DTP, we will write TW (x,7) to denote the time win-
dow for variable x in the i such STP. The upper bound of a time window [L,u] for x
in STP i, written U(x,i), is u. The time window of a DTP variable x is TW (x)=Ujes
TW (x,i), where S is the solution set of D.

The dispatcher can provide information about when actions are enabled and live in
an Execution Table (ET). This is a list of ordered pairs, one for each enabled action.
The first element of the entry specifies the action, and the second is a list of the con-
vex intervals in that element’s time window. For our example, then, the initial ET
would be: {<P, {15,101, [15,201}>, <OQ, {[5,101,[15,201} }>, <R,
{111,121,{21,22]1}>}. The ET summarizes the information in the solution STPS so that
the executive does not have to handle them directly.

The ET provides information about what actions may be performed, but it does not
provide enough information for the executive to determine what actions must be per-
formed. To see this, note that the ET just given does not indicate that there is a prob-
lem with deferring both P and Q until after time 10. However, such a decision would
Jead to failure: if the clock time reaches 11 and neither P nor Q has been executed,
then all four solutions to the DTP will have been eliminated. Thus, in addition to the
information in the ET, the dispatcher must also provide a second type of information
to the executive. The deadline formula (DF) provides the executive with information
about the next deadline that must be met.

In the next section, we explain how to calculate the DF, which is more complicated
than computing the ET. Here we simply complete the example, by illustrating how the
ET and the DF would be updated as time passes. The initial DF would indicate that
either P or Q must be executed by time 10. Suppose that at time 8, action P is exe-
cuted. At this point, STP; and STP, are no longer solutions. The ET then becomes {
<Q, {[15,201}>, <R, {[11,12], [21,22]}> } and the DF is trivially “Q by 20” . In
this case, an update to ET and DF resulted because an activity occurred. However,
updates may also be required when an activity does not occur within an allowable time
window. For example, if R has still not executed at time 13, then its entry in the ET
should be updated to be just the singleton [21,22], with no changes required to the DF.
The example presented in this section contains variables with very little interaction.
In general, there can be significantly more interaction amongst the temporal con-
straints, and the DF can be arbitrarily complex.

4 The Dispatch Algorithm

We now sketch our algorithm for the dispatch of plans encoded as DTPs. The in-
put is a DTP and the output is an Execution Table (ET) and a Deadline Formula (DF).
For each pair <x, TW(x)> in ET, x must be executed some time within TW(x). Itis up
to the executive to decide exactly when. The DF imposes the constraint that F has to

17

hold by time ¢, where a variable that appears in the DF becomes true when its corre-
sponding event is execuied.

The dispatch algorithm will be called in three circumstances: (1) when a new plan
needs to have its dispatch information initialized, at or before time 7TR; (2) when an
event in the DTP is executed; (3) when an opportunity for execution passes because
the clock time passes the upper bound of a convex interval in the time window for an
action that has not yet been executed. Pseudo-code is provided in Figure 1. Space
constraints preclude detailed description of the algorithm (but see [S]). Here we sim-
ply illustrate the procedure for computing the DF, the most interesting part of the
algorithm.

Recall the example above. Initially, at time TR, the DTP has four solutions. To
determine the initial DF, we consider the next critical moment, NC, which is the next
time at which any action must be performed. This time is equal to the minimal value
of all the upper bounds on time windows for actions, 1.¢., it 18 min{U(x,i)! x is an ac-
tion in the DTP, and i is a solution STP}. For instance, in our example DTP, U(P, 1)
=U(P, 2) = 10. The actions that may need to be executed by NC are those x such that
U(x,i) = NC for some STP i. We create a list UMIN containing ordered pairs <x,i>
such that U(x,i) = NC. In our current example, UMIN = {<P, 1>, <P, 2>, <Q, 3>,
<Q, 4>}. Now we perform the interesting part of the computation. If <x,i> is in
UMIN , it means that unless x is executed by time NC, STPi will cease to be a solu-
tion for the DTP. It is acceptable for STPi to be eliminated from the solution set only
if there is at least one alternative STP that is not simultaneously eliminated. This is
exactly what the deadline formula ensures: that at the next critical moment, the entire
set of solutions will not be simultaneously eliminated. We thus use a minimal set
cover algorithm to compute all sets of pairs <x,i> in UMIN such that the i values
form a minimal cover of the set of solution STPs. In our example, there is only one
minimal cover, namely the entire set UMIN. Thus, the initial DF specifies that P or Q
must be executed by time 10: <Pv Q, 10>. In general, there may be multiple mini-
mal covers of the solution STPs: in that case, each cover specifies a disjunction of
actions that must be performed by the next critical time. For instance, suppose that
some DTP has four solution STPs, and that at time TR, U (L, D=U (L, 2)=U (M, 3)
=UM,4)=U(N,4)=U(S, 3)=10. Then by time 10 either L. or M must be exe-
cuted; additionally, at least one of L or N or S must be executed. The corresponding
DF is <(Lv M)A(Lv Nv S), 10>.

5 Formal Properties of the Algorithm

The role of a dispatcher is to notify the executive of when actions may be executed
and when they must be executed. Informally, we will say that a dispatch algorithm is
correct if, whenever the executive executes actions according to the dispatch notifica-
tions, the performance of those actions respects the temporal constraints of the under-
lying plan. Obviously, dispatch algorithms should be correct, but correctness is not
enough. Dispatchers should also be deadlock-free: they should provide enough in-
formation so that the executive does not violate a constraint through inaction. A

18

Initial-Dispatch (DTP D)

1. Find all n solutions (consistent component STPs) to D, calculate their distance
graphs, and store them in Solutions [i]. Associate cach solution with its (integer-
valued) index.

2. Set the variable TR to have the status Executed, and assign TR=0.

3. Compute-Dispatch-Info(Solutions).

Update-for-Executed-Event (STP [i] Solutions)

Let x be the event that was just executed, at time 1.

Remove from Solutions all STPs i for which ¢t ¢ TW (x,?).
Propagate the constraint # < x — TR <t in all remaining Solutions.
Mark x as Executed.

Compute-Dispatch-Info (Solutions).

NP W

Update-for-Violated-Bounds (STP{i] Solutions)
1. LetU={U(x BIU (x, k) < Current-Time}
2. Remove from Solutions all STPs k that appear in U.
3. Compute-Dispatch-Info (Solutions).

Compute-Dispatch-Info (STPJi] Solutions)

1. For each event x in Solutions

2. {If x is enabled

3. ET =ET u <x, TW(x)>].

4. Let U = the set of upper bounds on time windows, U(x,i) for each still un-
executed action x and each STP i.

S. Let NC, the next critical time point, be the value of the minimum upper

bound in U.

6. Let Upgy = {U(x, DI U(x,i) = NC]}.

7. For each x such that U(x,i) € Upgp, let S, = {i TU(x,7) € Upgn}

8. {Initialize F = true;

9. For each minimal solution MinCover of the set-cover problem (Solu-

ﬁOﬂS, USX), letF=Fna (V x| Sxe MinCover x)'
10. DF=<F, NC>.)

Figure 1. The Dispatch Algorithm

third desirable property for dispatchers is maximal flexibility: they should not issue a
notification that unnecessarily eliminates a possible execution, i.e., an execution that
respects the constraints of the underlying plan. Finally, we will require dispatch algo-
rithms to be useful, in the sense that they really do some work. Usefulness will be
defined as producing outputs that require only polynomial-time reasoning on the part
of the executive. Without a requirement of usefulness, one could achieve the other
three properties by designing a DTP dispatcher that simply passed the DTP represen-
tation of a plan on to the executive, letting it do all the reasoning about when to exe-
cute actions.

19

Our dispatch algorithm has these four propertics, as proved in [5]. The proofs de-
pend on a more precise notion of how the dispatcher and the executive interact. The
dispatcher issues a notification sequence, a list of pairs <ET,DF>, . . . ,<ET,DF>,,
with a new notification issued every time an event is executed or an upper bound is
passed. The executive performs an execution sequence, a list x;= ¢, ..., x,=t, indi-
cating that event x; is executed at time #;, subject to the restriction that j>i = ;>
An execution sequence is complete if it includes an assignment for each event in the
original DTP; otherwise it is partial. The notification and execution sequences will be
interleaved in an event sequence. We associate each execution event with the preced-
ing notification, writing Notif(x;) to denote the notification of event x;.

Definition. An execution sequence E respects a notification sequence N iff

1. For each execution event x;=t;in E, <x; TW (x;)> appears in ET of Notif (x;) and
i e TW(x), i.e., each event is performed in its allowable time window.

2. Foreach DF=<F,r>in N, {x;lx; =1;€ E and 1; <t} satisfies F. That is, the execu-
tion sequence satisfies all the deadline formulae.

Theorem 1: The dispatch algorithm in Fig. 1 is correct, i.e., any complete execution
sequence that respects its notifications also satisfies the constraints of D.

Theorem 2: The dispatch algorithm in Fig. 1 is deadlock-free, i.e., any partial execu-
tion that respects its notifications can be extended to a complete execution that satis-
fies the constraints of D.

Theorem 3: The dispatch algorithm in Fig. 1 is maximally flexible, i.e., every com-
plete execution sequence that respects the constraints in D will be part of some com-
plete event sequence.

Theorem 4: The dispatch algorithm in Fig. 1 is useful, i.e., generating an execution
sequence is polynomial in the size of the notifications.

References

1. Muscettola, N., P. Morris, and 1. Tsamardinos. Reformulating Temporal
Plans for Efficient Execution. in Proceedings of the 6th Conference on Principles of
Knowledge Representation and Reasoning. 1998.

2. Tsamardinos, 1., P. Morris, and N. Muscettola, Fast Transformation of Tem-
poral Plans for Efficient Execution, in Proceedings of the 15th National Conference
on Artificial Intelligence. 1988, AAAI Press/MIT Press: Menlo Park, CA. p. 254-261.
3. Wallace, R.J. and E.C. Freuder, Dispatchable Execution of Schedules Involv-
ing Consumable Resources, in Proceedings of the 5th International Conference on
Artificial Intelligence Planning and Scheduling. 2000.

4, Dechter, R., 1. Meiri, and J. Pearl, Temporal Constraint Networks. Artificial
Intelligence, 1991. 49: p. 61-95.
5. Tsamardinos, 1., Constraint-Based Temporal Reasoning Algorithms, with

Applications to Planning. 2001.

20

University of Pittsburgh Intelligent Systems Program M.S. Project Report, 2001

Flexibility Measures of Sets of Plans

Philip Ganchev
philip@ecs.pitt.edu
Intelligent Systems Program
University of Pittsburgh
2001.06.10.

1. Motivation

Many systems are designed to perform both planning and execution: they include a plan generation
component to produce plans that are then dispatched to an execution component, or executive,
which is responsible for the performance of the actibns in the plan. When the plans have temporal
constraints, dispatch may be non-trivial, and the system may include a distinct dispatcher, which is
responsible for ensuring that all temporal constraints are satisfied by the executive. Such a
dispatcher is the Dispatch Algorithm, [Tsamardinos, Pollack, Ganchev, 2001], which I will refer to
as the TPG Dispatch Algorithm, or TPG, for clarity. In this project, I suggest a modification of the
algorithm to increase its efficiency; in service of this, I also introduce a useful novel concept:

flexibility of a set of plans.

The nature and difficulty of the dispatch problem depends upon the temporal representation used in
the plans. When all actions have fixed times, plan dispatch is straightforward: the dispatcher just
submits the fixed schedule to the executive, which then has to perform the actions according to that
schedule. However, to allow for the possibility of unanticipated events, it is often desirable to use
plans with looser temporal constraints. Much work has been done on plans represented as instances

of the Simple Temporal Problem (STP).

Definition 1. A Simple Temporal Problem (STP) is a constraint satisfaction problem <V, C>,

where

e Vs a set of variables (or: nodes) representing events, and their domains are the real numbers,
and

o (' is a set of constraints of the form C;: [<x—y <u, such that x, y € V, and /, u are real numbers.

21

The TPG Dispatcher applies to a broader set of plans: ones that can be represented as Disjunctive
Temporal Problems (DTPs). The DTP formalism is strictly more expressive than the STP.

Definition 2. A Disjunctive Temporal Problem (DTP) is a constraint satisfaction problem <V,

C>, where

e Visa set of variables (or nodes) representing events, and their domains are the real numbers,
and

e (is a set of disjunctive constraints of the form Ci: I; <x;—yi<uy Vv ...v [<X, —Yn < tiy,

such that for 1<i<n, x;, y;€ V, and I;, u; are real numbers.

Definition 3. An exact solution to a DTP is an assignment to each variable in V such that all the

constraints in C are satisfied. If a DTP has at least one exact solution, it is consistent.

Definition 4. A(n inexact) solution to a DTP is a consistent component STP of it. The solution set

for a DTP is the set of all its solutions.

The TPG Dispatcher has four required properties: it is correct, deadlock-free, maximally-flexible
and useful. However, the algorithm relies upon access to the complete set of solutions to the given
DTP, which it calculates in the first step, and stores in the list Solutions. For a DTP with m
constraints, each of which has / disjuncts, there are in the worst case (/™) solutions. Each one
takes polynomial time to find in the worst case, so the first step of the algorithm would take

exponential time in the size of the DTP.

2. Incremental Generation of Solutions

One way to avoid generating all the DTP solutions at once is to generate a subset of them and
continue with the algorithm treating the subset as the complete solution set. However, any
substantial decrease in the size of Solutions corresponds to a decrease in the ways of executing the
plan. In particular, the property of Maximal Flexibility of the dispatcher is sacrificed, since any

removed solution will never be part of a complete event sequence — the dispatcher’s notifications

22

instruct the executive against executing this STP. Since the TPG Dispatcher removes STPs from
Solutions when they are no longer consistent with the current execution sequence, most of the STPs
may soon be removed from the working solution set, forcing the dispatcher to commit to the few

that remain, and making the plan brittle.

Another possibility is to generate a subset of solutions initially, and search for additional ones
incrementally, as STPs are removed from Solutions. Again, the resulting dispatcher is not
maximally flexible, for the same reason as above. However, it considers many more solutions than

the method above.

To define a criterion of how many additional solutions the algorithm should search for (i.e. when to

stop searching), we introduce the notion of the ﬂexibility of a set of plans. The notion of flexibility

roughly represents the freedom allowed in the execution of the set of plans. An exact definition of a
measure of flexibility is suggested in the following section. Until then, we can think of the number
of ways of assigning values to the variables, as an example of a measure of flexibility. Let us

assume that we have defined such a measure as the function

f:{X|Xisaset of STPs} > N.

Whenever some STPs are removed from Solutions, the dispatcher checks whether f{Solutions)
exceeds some flexibility threshold FT. If so, it continues like the TPG Dispatcher, otherwise it
searches for more solutions until Solutions again reaches the desired level of flexibility. The

pseudocode for the algorithm is shown in Figure 1 below.

Figure 1: Restore-Flexibility

Global boolean exist-more-solutions

Restore-Flexibility(STP-set Solutions, DTP D, Flexibility Threshold F7, Search time limit /)
1. time-used € 0
2. while f{Solutions) < FT and time-used < | and exist-more-solutions do

3. STP € Search-For-New-Solution(D, | — time-used, exist-more-solutions)

23

4. if exist-more-solutions then
5. add STP to Solutions

6. return Solutions

Then, the subroutines of the dispatcher [1] become as shown in Figures 2 through 4 below.

Figure 2: Initial-Dispatch

Initial-Dispatch (DTP D)
6. exist-more-solutions € True.
7. Solutions € Restore-Flexibilin{Solutions, D, FT, [).

Associate each solution with its (integer-valued) index.

8. Set the variable 7R to have status Executed, and assign 7R € 0.
9. OQutput-ET(Solutions).
10. Output-DF(Solutions).

Figure 4: Update-for-Executed-Event

Update-for-Executed-Event (Solutions)

1. Let x be the event that was executed at time 7.

2. Remove from Solutions all STPs i for which t ¢ TW(x,i).

3. Propagate the constraint <x — 7R <t in all remaining STPs in Solutions.
4. Solutions € Restore-Flexibility(Solutions, D, FT,]).

5. Mark x as Executed.

6. Output-ET (Solutions).

7. Output-DF (Solutions).

24

3. “Number-of-Executions” Flexibility Measure

One challenge in defining a measure of flexibility is that it can mean different things in different
contexts. Another challenge is that it must be computed efficiently. Here I explore one definition of
flexibility of a set of STNs.

For simplicity, let us first consider a single STP. If the domains of all the variables are discrete, we

can define the flexibility in the way that is probably most intuitive:

Definition 5. The number-of-executions flexibility of an STP with discrete variables is the
number of exact solutions to the STP, i.e. the number of assignments of values to the variables,

consistent with the constraints.
Recall the definition of time window:

Definition. The time window of an STP variable x is a pair [/, u] such that / <x — TR < u satisfies
all STP constraints, and for all /’, #’ such that [’ <x — TR < u’ satisfies all STP constraints, /’ </ and

u <u’. When every variable of an STP has a time window with finite bounds / and u, we will say

the STP is bounded.
In many practical applications, the STPs can be bounded. Then, for the STNs where all the
variables are discrete, the number of possible executions is the number of lattice points in a
polytope P in R":

PN Z".
(Z is the set of integers.)
To see this, consider an STP S = <E,C>, with variables E, and constraints C. Suppose there are n

variables x;, each with domain the natural numbers N. The space of all assignments to <x, ..., X,>,

is N”, where each variable corresponds to a dimension in N”. Each inequality constraint C; € C,

25

Xn—Xp < b

| represents a half-space of R” on a plane with slope 1, -1 and 0 w.r.t. x;, x;; and all other variables
respectively. Any assignment satisfying C; lies inside the half-space. Thus, if S is consistent, the
intersection of all m half-spaces is nonempty, and the set of all STN constraints, C, represents a
polyhedron P in R". If every variable has an upper and a lower bound with respect to some point,
then the polyhedron is bounded, i.e. a polytope. Combining this with the requirement for integral

assignments to the variables, we get that the number of executions of the STP is [P n Z7.
A summary of deterministic algorithms for computing the number of lattice points in polyhedra can
be found in [Batvonik & Pommersheim, 1999]. Below, I focus on volume computation, since

continuous variable STPs are more common.

For STPs where all the variables have continuous domains, the counterpart definition of flexibility

is:

Definition 6. The number-of-executions flexibility of an STP (with continuous variables) is the

size of the space of assignments of values to the variables, consistent with the constraints.

By the reasoning for the discrete case, this space is a volume in R" if the STP is consistent. Then

the space of all consistent assignments (the flexibility) is the volume of the polytope P,
volume(P).

Again, the STP must be bounded. For non-bounded STPs, the space of all consistent assignments is

infinite, and we need another definition of flexibility.

We considered the case of a single STP. For a set of STPs, we must find the volume (or lattice

points) of the union of the respective polytopes.

26

It is most accurate to use the volume for continuous STPs and the number of lattice points for

discrete STPs. In fact, the number of lattice points can be used for STPs with continuous variables,
by considering each variable to be discrete with certain granularity. Conversely, the volume can be
used as an alternative measure for discrete STPs. However, there is no advantage to either of these,

as the volume and the number of lattice points are equally costly to compute.

Exact computation of the volume of a polytope (or its number of lattice points) is #P-complete, and
therefore NP-Hard. However, there are polynomial-time algorithms for approximating volume(P)
[Bollobas, 1997]. The best ones use rapidly mixing random walks and are Fully-Polynomial
Approximation Schemes (FPRAS) based on [Dyer, Frieze, Kannan, 1991]. AFPRAS is a
randomized algorithm that runs in time polynomial in the representation of P, 1/¢ and log(1/7), and
with probability at least 1-7, produces an g-approximation to volume(P), for arbitrary 0<7<1 and
0<&<1. An g-approximation to volume(P) is a number volume~(P), s.t. (1-£) volume~(P) <
volume(P) < (1+¢&) volume(P). The asymptotically most efficient algorithm to date is that of
[Kannan, Lovész and Simonovitz, 1997], and is O'(n°) \.

Unfortunately, there are no implementations of any approximate algorithms. There are several

implementations of exact algorithms. The latest one is Vinci, [Bueler, Enge, Fukuda, 1998].
4. Timing Experiment

In order to assess the viability of this measure of flexibility, I timed Vinci on a range of randomly

generated STPs.
4.1. Method
The program Vinci was run on a Micron Millenia personal computer with a Pentium III 700 MHz

processor and 260 MB of RAM, running Windows NT 4.0. The experiments were done using a

Lisp program gen-fest. It generates a specified range of STPs by invoking Gen-STN, then invokes

' 0" is the “soft-O” notation usual for describing the speed of an FPRAS. It omits powers of log(n) and polynomials of
1/& and log(1/17).

27

Vinci on each STP and summarizes the output. Gen-STN can generate a single STP in the format

required by Vinci. It is an extension of random-gen, which is written by Ioannis Tsamardinos.

The STPs generated varied by several features: nnodes, nedges, horizon and bound-param. They

are described below:

e nnodes: The number of STP variables, 1.e. nodes. This includes TR, so nnodes = 1 +
dimension(P).

e nedges: The number of STP constraints.

e horizon: The upper bound on the uniform distribution from which the initial schedule

is drawn; also the default constraints between each variable and 7R have bounds

+horizon.
e bound-param: The distribution from which the intervals are drawn that are combined with

the initial schedule to produce the bounds for the constraints.

To better understand the purpose of the last two features, consider a summary of gen-stn.lisp’s
algorithm, shown in Figure 5. Each STP has a corresponding distance graph, whose nodes
correspond to variables and whose directed edges correspond to constraints between pairs of

variables.

Figure S: Gen-STN
Gen-STN (integers nnodes, nedges, horizon, bound-param)
1. Generate a random schedule for the variables. Assign each variable a value drawn from
Uniform[0, Aorizon)].

2. Output the 2*nnodes default constraints +x; — +TR < horizon.

There remain nedges — 2 *nnodes constraints to output, each of the form x;; — xp < b;, between

distinct pairs of unique non-7R variables x;1, xi.

3. Select the pairs x;;, X uniformly at random.

28

4. For each pair,
Choose a number r; draw from Uniform[0, bound-param —1]

Output the constraint x;; — x; <r; + (schedule-time[x;1] — schedule-time[x;]).

We may expect that increasing the features will have the following effects respectively:

e nnodes: Increases volume(P) since the number of dimensions increases;
Increases computation time and space because of the greater volume;
e nedges: Decreases volume(P) (but less than nnodes increases it), because it makes
the polytope more constrained;
Increases time and space, because additional constraint processing is
required.
Increases P(volume(P)=0) because there are more trials to select a pair of
nodes for both an upper and a lower bound.
e horizon: Increases the expected bounds, hence volume(P), space and time;
Increases the variability of the bounds because the distances in the schedule
are drawn from a larger distribution.
e bound-param:Increases the variability of the bounds because the r;s are drawn from a
larger distribution, hence
Decreases P(volume(P)=0).

The significance of P(volume(P)=0) will become clear when we discuss the results in Section 6.
We fix horizon, bound-param and nnodes, and vary nedges from the minimum to the maximum.

We test each configuration with 10 randomly generated STPs. We do this with nnodes =6, ..., 11.

Then we repeat for other value-combinations of horizon and bound-param; the values used are (20,

20), (50, 20), (50, 50).

29

4.2. Results

The results from the experiments, the volume of the randomly generated STPs, time, space and
volume, are summarized in the graphs in Figures 6 through 14 below. Each graph plots one of time,
memory or volume against nedges, for nnodes = 6, ..., 11. The values shown are the arithmetic
means of the runs of Vinci on the 10 randomly generated STPs. The graphs use a logarithmic scale

on the vertical axis.

The graphs show the following results. Computation time and memory increase approximately
exponentially with nnodes (the number of STP variables), and approximately linearly with nedges
(the number of STP constraints). Volume (number-of-executions flexibility) decreases
exponentially with the number of constraints, and increases approximately exponentially with the

number of variables.

Legend

—&— nnodes==6 nnodes=7 nnodes=8 nnodes=9 —X—nnodes=10 -—®—nnodes=11

30

Figure 6. Horizon =20, bound-param =20. Time

100 -
10
1
0
1] H
E
o
0.1 ;
1
|
X
0.01]\[#\[f&r;’iﬂc
0.001 - ‘

10 20

40 50 60
Number of Constraints {(nedges)

70

80

90

31

Figure 7. Horizon =20, bound-param =20. Memory

100000 -

10000

1000

Memory (KB)

100

10

10 20 30 40 50 60 70 80 90
Number of Constraints (nedges)

32

1E+17 -

1E+16

1E+15

1E+14

1E+13

1E+12

1E+11

1E+07

1E+06

1E+05

1E+04

1E+03

1E+02

1E+01

1E+00

Figure 8. Horizon =20, bound-param =20. Volume

10

20 30 40 50 60 70
Number of Constraints (nedges)

80

90

33

100 -

10

Time (s)

0.1

0.01

0.001 -

Figure 9. Horizon =50, bound-param =20. Time

I

P

20

30

40 50 60
Number of Constraints (nedges)

70

80 90

34

100000 -

10000

:

Memory (KB)

100

10

Figure 10. Horizon =50, bound-param =20. Memory

ff
J 5
i
Wd
s

Number of Constraints (nedges)

35

1E+20 -

1E+19

1E+18

1E+17

1E+16

1E+15

1E+14

1E+13

1E+12

1E+11

1E+10

Volume

1E+09

1E+08

1E+07

1E+06

1E+05

1E+04

1E+03

1E+02

1E+01

1E+00

Figure 11. Horizon =50, bound-param=20. Volume

10

20

30

40 50 60
Number of Constraints (nedges)

70

80

90

36

Figure 12. Horizon =50, bound-param=50. Time
100 -
10
1
0
Q
E
|
0.1
)Z |
0.01 24 20N
i TAY
1
l /
o ov
0.001 -
10 20 30 40 50 60 70 80 90

Number of Constraints (nedges)

37

Figure 13. Horizon =50, bound-param =50. Memory

100000 -

10000

1000
@
3
<
o
£
)
=

100

10

1
10 20 30 40 50 60 70 80

Number of Constraints (nedges)

38

Volume

1E+20 -

1E+19

1E+18

1E+17

1E+16

1E+15

1E+14

1E+13

1E+12

1E+11

1E+10

1E+09

1E+08

1E+07

1E+06

1E+05

1E+04

1E+03

1E+02

1E+01

1E+00

Figure 14. Horizon =50, bound-param =50. Volume

20 30 40 50 60 70
Number of Constraints {(nedges)

80

90

39

5. Discussion

The exponential growth of computation time and space means that exact computation of volume
will be impractical as a flexibility measure for a DTP dispatcher with incremental generation of
solutions. I suspect that it is as costly as initially generating all the solutions, as in the original TPG

dispatcher; however, we have not done an empirical study of the latter.

Furthermore, many STPs with large nnodes (>10) and nedges made the program run out of memory
and crash. Vinci can be run with the storage level option, -sn, to use less memory at the expense of
computation time. Here » is a number; when the storage option is not used, » defaults to 20; lower

n uses less memory.

I used the storage option to see the effect on computation time. First, I ran randomly generated

STPs with nnodes=12 and increasing nedges, until a sequence of several STPs where Vinci ran out
of memory. This happened at nrnodes=45. Then I decreased the storage parameter until Vinci again
had enough memory to complete the computations, and so on. The lowest storage level I tried was

4. The table in Figure 15 below summarizes the results.

Figure 15: The —s Option

nnodes=12, horizon=20, bound-param=20

Nedges Storage Time Memory
Range Level Range (s) | Range (Mb)
22 - 44 20 (default) | 0.1 —47 0.132-79.8
44 — 46 4 590 -2197 |52-8.8

46 - 50 6 39 - 207 29.5-87.8
50-59 5 185-1639 | 18.5-87.3

The computation times are again too large to be practical.

40

Another possibility, which I did not explore, is to compile the polytopes (the STPs) from a
constraints representation (“H format™) into a vertices representation (“V format”) and use both
representations in computing the volume; this would reduce the computation space, at the expense
of the time for computing the V format. However, this is unlikely to sufficiently improve the speed

compared to using a lower storage level.

In the experiment, some of the polytopes had volume 0. This occurred with large nedges and small
bound-param. A 0 volume in nnodes dimensions occurs when one or more of the variables are
constrained to a point. As an example, consider an STP with variables {7R, x, y} and constraints
{x~TR <1, TRx <1,y-TR <1, TR-y <—1}. The last two constraints imply y=1. So the solution
space is a line segment —1 <x < 1, y=1. A line segment has volume 0 in 2D. However, there is more
than one legal assignment to (x, y). For instance, three are: (-1,1), (0,1), (1,1). Thus, 0 volume does
not correctly represent the number of executions in 2D, but it does in 1D. This is in effect the
problem of computing the flexibility of a mixture of variables: here x acts as a continuous variable,
y as a discrete one. This problem remains when we use an approximate algorithm instead of an
exact one, since the algorithm would have to sample the space at a point in the correct hyperplane

(in the example, the hyperplane y=1) and the likelihood of that is small.

There are at least two ways to correct the flexibility measure to account for this. The first way is to
find all & variables constrained to a point, then compute the volume in (nnodes—k)-D. Unfortunately
it is not sufficient to parse the constraints and find all pairs of variables constrained by the same
bound from above and below, as in the example above. A 0 volume can also occur in a set of three
or more pairs of constraints, where it is not obvious which variables are constrained to a point.
Consider the constraints {1 <x-TR<2,1<y-x<2,4<y-TR<6,1<z-TR <2}. The first three
imply x=2, y=4, and the volume in 3D is 0. z can take any value from [1,2]. However, the STP

consistency algorithm can deduce which STP variables are constrained to a point.
The second approach is to add some slack to each constraint bound, so that any solution to the STP

contributes some volume. This is essentially a way of adapting the “discrete” variables to make

them continuous. The previous example can be modified to {0.9 <x-TR<2.1,09<yx<2.1,3.9

41

<y-TR <£6.1,0.9 <z-TR <2.1}. The volume is now 0.036. A single solution in 3D has volume
0.2°=0.008, so an estimate of the flexibility is 0.036-0.008 = 0.028.

There remains open the problem of defining flexibility when some of the variables are not bounded,
i.e. when the polyhedron represented by the constraints is not a polytope. One approach is to define
an artificial domain-specific bound to all constraints. Another is to increasingly discount greater

values of the variables, so that they contribute less and less to the volume computation.

Although the exact computation of the number-of-executions flexibility seems impractical, an
approximate algorithm probably is tractable. Finally, more investigation into flexibility measures is

warranted.

6. References

1. Tsamardinos, 1., Pollack, M. E., and Ganchev, P. Flexible Dispatch of Disjunctive Plans.
[submitted] The European Conference on Planning, 2001.

2. Barvinok A. and Pommersheim J. E. An Algorithmic Theory of Lattice Points in Polyhedra.
1999 (http://www.msri.org/publications/books/Book38/files/barvinok.ps.gz).

3. Bollobés, B. Volume Estimates and Rapid Mixing. Flavors of Geometry, MSRI
Publications, Volume 31, 1997. p. 151 - 182
(http://www.msri.org/publications/books/Book3 1/files/bollobas. pdf).

4, Dyer, M., Frieze, A. and Kannan, R. 4 Random Polynomial Time Algorithm For
Approximating The Volume Of Convex Bodies, 1991.

5. Kannan, R., Lovasz, L., and Simonovitz., M. Random walks and an O(nj)
volume algorithm for convex bodies. Random Structures Algorithms, 11:1-
50, 1997.

6. Bueler, B., Enge A. and Fukuda, K. Exact Volume Computation for Polytopes: A Practical
Study. Submitted to "Polytopes: Combinatorics and Computation', Gunter Ziegler, editor,
DMV-seminar volume, Birkhauser Verlag, 1998.

42

International Journal of Cooperative Information Systems, 2002

International Journal of Cooperative Information Systems
© World Scientific Publishing Company

An Evaluation of the Java-based Approaches to Web Database Access

Stavros Papastavrou
Department of Computer Science, Universily of Pittsburgh
Pittsburgh, Pennsylvania 15260, U.S.A.

Panos K. Chrysanthis

Department of Computer Science, University of Pittsburgh
Pittsburgh, Pennsylvania 15260, U.5.A.

George Samaras

n A VR ST o Qo FTc Al AN Ay TS RIS D Ol
LACPATYINRETL Of VOTRPULET OCICRLE, URIVCTSiLy Of Uyprus, /o NDGipoicos oLr.

CY-1678 Nicosia, Cyprus

Evaggelia Pitoura

Department of Computer Science, Untversity of IToannina
GR-45110 JToannina, Greece

Received (to be inserted
Revised by Publisher)

Given the undeniable popularity of the Web, providing efficient and secure access to
remote databases using a Web browser is crucial for the emerging cooperative infor-
mation systems and applications. In this paper, we evaluate all currently available
Java-based approaches that support persistent connections between Web clients and
database servers. These approaches include Java applets, Java Sockets, Servlets, Re-
mote Method Invocation, CORBA, and mobile agents technology. Our comparison is
along the dimensions of performance and programmability. Our findings point out that
best performance is not always achievable with high programmability and low resource
requirements, moreover, the mobile agent technology needs to improve its programma-
bility while giving particular emphasis on its infrastructure.

Keywords: Web Databases, Java, Mobile Agents, Servlets, CORBA, RMI, JDBC, Java
Sockets

1. Introduction

Providing efficient and secure access to remote databases using a Web browser is cru-
cial for the emerging cooperative information systems, such as Virtual Enterprises.
A number of methods for Web database connectivity and integration have been pro-
posed such as CGI scripts, active pages, databases speaking http, external viewers
or plug-ins, and HyperWave 1. These methods enhance the Web server capabilities
with dynamic functionality for interactive and cooperative applications to create
database connections, execute queries and transactions, and generate dynamic Web

43

pages. However, there is an increasing interest in those that are Java-based due
to the inherent advantages of Java, namely, platform independence support, highly
secure program execution, and small size of compiled code, combined with a simple
database connectivity interface (JDBC API) that facilitates application access to
relational databases over the Web at different URLs 2.

Several Java-based methods are currently available that can be used for the
development of Web cooperative information systems but in the best of our knowl-
edge, there is no quantitative comparison of them in a database context. Existing
studies either primarily focused on the various server side scripting mechanisms
to support database connectivity 3%, or evaluated the Java client/server commu-
nication paradigm without any database connectivity or lengthy computations °.
This experimental paper contributes a comparison of the six Java-based approaches,
specifically, Java applets using JDBC (Applet JDBC), Java Sockets ¢, Java Servlets
7, Remote Method Invocation (RMI) &, CORBA °, and Java Mobile Agents (JMA)
10, We focus on these methods because of their support for persistent database
connections, which are essential for co-operative environments with long, and re-
peated data retrievals and updates. Further, these approaches are currently used
as a foundation for many emerging Java-based infrastructures. For example, the
servlet technology is the driving force behind Web database connectivity based on
the Java Server Pages (JSP) !! and based on the Page Compile (JHTML) 2. An-
other striking example to servlet technology is XSQL Servlet which processes XML
documents with SQL statements inserted 13. XSQL servlet performs operations on
XML through JDBC, thus combining the power of XML, SQL, and Java. Other
examples include the CoABS Grid * and E*Speak 5 both of which are built on
top of RMI.

For our evaluation, we used each approach to implement a Web client accessing
and querying a remote database. Each approach differs in the way the client estab-
lishes connection with remote database servers with the help of a middleware and
the implementation of the middleware. Depending on the way the client establishes
connection with the middleware, the approaches can be classified as (1) non-RPC
ones, that do not provide for remote method invocation mechanisms, (2) RPC ones
with clear remote method invocation semantics, and (3) RPC-like ones involving
mobile agent technology.

We compared the behavior of the different approaches along the two dimensions
of performance and programmability. In order to get a better insight into per-
formance, we consider both the issue of perceived client latency, i.e., performance
observed by a single client, and middleware scalability, i.e., middleware ability to
support multiple concurrent client requests. Perceived client latency is expressed
in terms of average response time at the client site, and middleware scalability in
terms of throughput at the server site under different workloads.

Development effort and programming complexity are determined by the system
calls for establishing connection, submitting the query and getting back the results.
Hence, we express programmability in terms of the number of system calls at both

44

the client and the server sites.

The two salient results of our study are: (1) Best performance is not always
achievable with high programmability and low resource requirements, and (2) the
mobile agent technology needs to improve its programmability while giving partic-
ular emphasis in its infrastructure. Our results clearly indicate that mobile agents
should not be thought of and utilized as yet another simple, data shipping mecha-
nism. Any gain in performance using mobile agents is strongly associated with their
ability to significantly reduce the volume of the resulting data at the server site and
therefore, cut down long data communication latencies. Hence, Java mobile agents’
efficiency lies in their ability of shipping client-custom code at the server site where
the high-volume data is available.

In the next section, we provide a brief introduction to Java and Java database
connectivity. In Section 3, we first discuss the design principles underlying our
experimental testbed and then elaborate on the implementation details of the six
approaches under evaluation. In Section 4, we discuss the performance evaluation
results and compare the different approaches from the programmability point of
view. Section 5 concludes with a summary and future work.

2. Background: Java and Java Database Connectivity

6 is an interpreted, object-oriented programming language developed by Sun

Microsystems Inc. with the goal of providing a distributed, secure, and portable

Javal

programming language. The uniqueness of Java lies on the fact that its compiled
code can run on any platform, which supports a Java runtime environment {or JVM
- Java Virtual Machine). Additionally, Java programs can run in Java-enabled Web
browsers in the form of applets, which are downloaded as a part of an html page.
Security is achieved by restricting the execution of java applets within the context of
the client’s web browser, and by permitting the communication of java applets only
with their originating web server. That is, Java applets are not allowed to access
any system resources or communicate with any arbitrary site. Java’s portability
is further enhanced by several additional safety features such as the absence of
pointers, automatic array bounds check and garbage collection.

Three other important characteristics of Java that are very important for build-
ing cooperative database applications, are: (1) its rich graphical interface library
that supports the development of sophisticated interfaces,(2) its built-in thread li-
brary to support multithreaded operations that allow for concurrent interactions,
and (3) its database connectivity interface (JDBC API) that facilitates application
access to multiple relational databases over the Web at different URLs 5.

The JDBC API is realized by various drivers, which execute under the control
of a JDBC manager !7. There is a driver for each particular Database Management
System (DBMS). A JDBC driver can be implemented in four different ways, as
shown in Figure 1. These drivers differ in two significant ways: (1) the size of
their downloadable code and (2) in the way that they support multiple database

45

connections.

Client Layer

Stand-Alone ODBMS Applet
Java DBMS within a
Application

Fig. 1. Standard JDBC Methodologies

The type 1 JDBC driver, namely, the JDBC-ODBC Bridge driver, translates
JDBC calls to ODBC ones and is suitable to access databases with only ODBC
interface. A type 1 driver requires remote clients to pre-install some ODBC binary
code and is not designed to be downloadable by Java applets.

The type 2 JDBC driver, the native-A PI partly Java technology-enabled driver,
is written half in Java and half in a DBMS native, vendor-specific code. A client
using this JDBC driver connects directly to a specific database server. In spite of
the ultimate speed with which a client accesses a remote database, this method
requires a-priori configuration to install DBMS native code at the client site.

The type 3 JDBC driver, the net-protocol fully Java technology-enabled driver,
is the most flexible with Java applets. It is written entirely in Java and can be fully
downloaded at run time, requiring no code pre-installation. A type 3 JDBC driver
translates a client’s query into an intermediate language that is converted into a
vendor-specific protocol by a middle-tier gateway. The more vendor protocols the
gateway supports, the more databases a client can access, without downloading
additional drivers.

The type 4 JDBC driver is a native-protocol fully Java technology-enabled driver
also written entirely in Java. The driver can be fully downloaded at the client at
run time, and enables it to use a DBMS-specific protocol to connect directly to the
remote database server. By eliminating the gateway of type JDBC 3 drivers, a type
4 JDBC driver exhibits better performance with respect to a single database access
at the expense of the flexibility in accessing multiple databases without loading
more than one driver. Hence, accessing multiple databases, type 4 drivers require
more resources. Further, even a single type 4 driver requires the client to download

46

significantly more code than any other type of drivers because they include the
vendor specific protocol.

3. The Experimental Testbed

We use each Java method to implement a Web client querying a remote database.
Our testbed is structured along a three-tier client/middleware/database model. Two
design principles were adopted in the selection of the various components during
the development of the testbed. First, our Web clients should be lean for allowing
fast downloads, and therefore increasing support for wireless clients. Second, no
a-priori configuration of the Web client should be necessary to run the experiments
in order to maintain portability, and therefore, support arbitrary clients. Thus,
our Web client is a Java applet stored on a Web server. When the Java applet is
downloaded and initialized at a client computer, queries can be issued through the
applet’s GUI to be executed on the remote database server (Figure 2). Our remote
database server, a 3-table Microsoft Access, is on the same machine with the Web
server.

[31 JDBC-ODBC call

[1] Applet Web

[2] Connecton Server

& submission of -
query ~t Middie-

ware
(4] Query results—T"|

ent

Fig. 2. Basic configuration

The role of the middleware is to accept client requests, execute them on the
database server, and return the results back to the client. Due to security restric-
tions of Java applets, part of the middleware has to execute on the Web server
machine. Recall that downloadable applets are not allowed to access any system
resources or communicate with any site other than their originating web server. In
our experiments, because the database server co-resides with the Web server, the
entire middleware in all cases executes on the same machine. To enhance perfor-
mance, if possible, the middleware connects to the database when it is activated
and before any query is submitted.

Given that an Access database can only be accessed using ODBC, the middle-
ware of all approaches except Applet JDBC, use a JDBC-ODBC bridge (type 1)
driver to connect to the database. A type 1 JDBC driver cannot be used in the
Applet JDBC approach in which the client applet downloads the JDBC driver, be-
cause a type 1 driver is not designed to be downloadable by Java applets. Instead
we use a type 3 JDBC driver, which as opposed to type 1 and 2 drivers, can be
fully downloaded at run time, requiring no code pre-installation. Further, it sup-
ports multiple vendor databases by translating clients” queries into an intermediate
language that is converted into a vendor-specific protocol by a middle-tier gateway,

47

including JDBC calls into ODBC ones. Although, type 4 drivers in general are
downloadable, in the context of our experiments in which JDBC calls need to be
translated to ODBC, type 4 drivers are not appropriate because they are equivalent
to type 2 ones.

In the rest of this section, we elaborate on the implementation of each ap-
proach. Initialization phase is the procedure for establishing database connectivity,
and ezecution phase is the procedure for querying the database after the database
connection is established.

3.1. Non-RPC Approaches: Java Socket and Java Servlet

Both the Java Socket and Java Servlet approaches use sockets to connect a client
and the middleware program. In the Java Socket approach, sockets are created
by the clients, whereas in the Servlet approach, they are created by the run-time
environment.

3.1.1. The Java socket approach

In this first approach, the middleware is a stand-alone Java application server
running on the Web server machine. A client collaborates with the application
server by establishing an explicit socket connection.

Figure 3 illustrates the steps involved for the initial query. The applet submits
the query through the socket connection to the application server, which decodes
the incoming stream of data, and executes the query on the database server using
the JDBC-ODBC driver. Subsequently, the application server constructs the result
table by retrieving row by row from the database server. As in embedded SQL, the
JDBC calls fetch one row at a time. The result table is then passed to the client
applet by means of data streams.

[1] Applet
e [2] Socket ™ Web
connection Server {3] JDBC-ODBC
& submission of p— call
\ wery k| Socke v
L1 Application Server
[4] Result in byte "]
streams

Fig. 3. The Socket approach
The cost of the first query in this approach is
(1) Initialization phase:

(a) The time for the client to open a socket connection with the application
server.

(2) Execution phase:

(a) The time for the client to pass to the application server the data stream
containing the SQL statement.

48

(b) The time for the application server to execute the query, obtain the results
and return them to the client.

All subsequent queries require only the execution phase.

3.1.2. Java Servlets Approach

In this approach, the middleware program is a Java servlet, which is a Java
program that runs as a child process within the context of a Web server program
that supports JVM and servlet engine. In our case, the application servlet was
loaded during the Web Server start-up time. Client’s queries are routed by the Web
server to the application servlet, which submits them to the database server for
processing. The results are assembled row by row using JDBC-ODBC calls. The
results are returned to the client again through the Web server.

All queries involve both an initialization and an execution phase. Thus, the cost
of any query in this approach is

(1) Initialization phase:
(a) The time for the client to establish a URL connection with the Web server.
(2) Execution phase:

(a) The time for the applet to invoke the application servlet passing the query
as a parameter (stating explicitly the servlet name and type of operation).

(b) The time for the servlet to execute the query, obtain and return the result
table to the client.

Figure 4 illustrates the steps required by a query in the servlet approach.

[1] Applet

o iRe#ggst_'__,__:f“_‘* Servet
a

server |
¢ 4 R;?:;txsbww enver {3] JDBC-ODBC cali
Client Via Web server

Fig. 4. Servlet approach

3.2. RPC approaches: Java RMI, CORBA, and Applet JDBC

The RPC approaches can be classified based on whether or not the client di-
rectly maintains the database connection. In the RMI and CORBA approaches, the
connection is maintained by the middleware whereas in the Applet JDBC approach,
by the web client.

3.2.1. The RMI approach

Java RMl is a Java application interface for implementing remote procedure calls
among distributed Java objects. In RMI, the middleware consists of two objects:

49

the application server which handles the queries; and the installer object, which is
used to start up the application server, and register it under a unique service name
with the Java virtual machine running on the Web server.

Figure 5 illustrates the steps required for the initial query in the RMI approach.
To establish a database connection, a client calls the RMI bind method to obtain
a reference to the application server. Using this reference, the client can submit
a query by calling a method on the application server passing the query as a pa-
rameter. The application server executes the query at the database server using
JDBC-ODBC, assembles the results row by row, and returns the result table to the
client as the return value of the method called.

i poplet——o [~
§ ———[2] RM! binding

Web
Server [3} JOBC-0ODBC

& RPC R calt
\ \\A RM} Application }(
[4] Results as a | Server !
retumn valge ———""]
of RPC

Fig. 5. RMI approach

The cost of the first query is

(1) Initialization phase:

(a) The time for the applet to obtain a reference to the remote application
server (bind to it) using a URL and a service name.

(2) Execution phase:

(a) The time for the client to invoke a method on the application server passing
the SQL statement as a parameter.

(b) The time for the application server to execute the SQL statement, obtain
and return the results.

The time required for a subsequent query is the execution phase.

3.2.2. The CORBA approach

CORBA, the Common Object Gateway Request Broker Architecture, is an
emerging distributed object standard that defines client/server relationships be-
tween objects in a common interface language. In order for a CORBA client object
to utilize a CORBA server object, an implementation of CORBA’s basic function-
ality, called the Object Request Broker (ORB), has to be loaded ai both the client
and the server sites. In our testbed, we use Visigenic’s Visibroker for Java '8, which
is also included in Netscape Navigator and hence, the client does not download the
ORB classes from the Web server which would have been the alternative. For secu-
rity purposes, CORBA allows an applet to bind to and communicate with a remote
CORBA server object only through a firewall called the IIOP (Internet Inter-ORB

50

Protocol) Gatekeeper, installed at the Web server machine from which the applet
is downloaded.

Except from the IIOP Gatekeeper, the middleware in the CORBA approach is
similar to the one in the RMI approach. There is an application server object and
an installer object. The installer object in this case is also used to load the ORB,
and register the application server with a unique service name with the ORB. As in
the RMI, socket, and servlet approaches, the CORBA application server executes
the queries using JDBC-ODBC and creates the result table retrieving row by row.
The steps required for the first query are shown in Figure 6.

1 tet—re |
[1} App N Web
d —— 2 Corba Server CORBA
biding ~—men—__| | Application
&RPC ., serer
vg\q_[:q Results as a] Gatekeeper | |-
return valug ——"] ORB
of RPC [3} JDBC-ODBC cati

Fig. 6. CORBA approach

The cost of the first query is

(1) Initialization phase:

(a) The time for the client to load and initialize core ORB classes.
(b) The time for the client to bind to the application server using only the
service name of the application server.

(2) Execution phase:

(a) The time for the client to invoke a method on the application server passing
the SQL statement as a parameter.

(b) The time for the application server to execute the SQL, obtain and return
the results to the client as the return value of the method called.

All subsequent queries require only the execution phase.

3.2.3. The Applet JDBC approach

This has been the traditional approach to web database connectivity in which
Applets use directly the JDBC API. In this approach, the client applet downloads
a type 3 JDBC driver and uses directly the JDBC API to connect to the database.
The gateway of the type 3 driver plays the role of the middleware. After the client
downloads the JDBC driver, it establishes database connectivity issuing JDBC calls
on the gateway, which are then mapped to ODBC calls on the database server.
Queries are submitted and their results are retrieved in the same way using JDBC
calls. As in all other approaches, the resulting table is assembled by retrieving
one row at a time. Figure 7 illustrates the steps involved in establishing database

51

connectivity and querying the remote database for the first time (initial query).

{1} Applet + JDBC
driver e Y

{2]J4DBC wen

Server B
call {3} Vendor-specifi

\ \ call
or ODBC caft
4] Result Set C

Fig. 7. The Applet JDBC approach using a type 3 JDBC driver

The cost for the first query is

(1) Initialization phase:

(a) The time for JDBC driver to be downloaded from the Web server and
initiated by the applet.
(b) The time for the applet to establish database connection via the gateway.

(2) Execution phase:

(a) The time for the applet to issue an SQL statement to the database and
obtain the results.

All subsequent queries require only the execution phase.

3.3. RPC-like approach: Java Mobile Agents (JMA)

Finally, in this subsection, we describe the approach of using mobile agents to
achieve Web database connectivity, and specifically, the best of the three proposed
variants 1920, Mobile agents are processes capable of pausing their execution on one
machine, dispatching themselves on another machine and resuming their execution
on the new machine. The idea in the JMA approach is to use one or more mobile
agents to implement the middleware and carry out the requests of the client.

For our experiments, we used Aglets ?!, for two reasons: (a) availability of code,
and (b) support for hosting mobile agents within applets without significant over-
head based on our prior experience with their use. Aglets can be fired from within
a special applet, called the FijiApplet that provides an aglet execution environ-
ment similar to the general stand-alone aglet runtime environment called the Tahiti
Server.

In the JMA approach, the middleware consists of three components: The DBMS-
aglet, the (Stationary) Assistant-aglet and the Aglet Router. The DBMS-aglet can
connect to a database and submit queries. Each database server is associated with
an Assistant-aglet identified by a unique aglet ID and a URL. An Assistant-aglet
provides the information necessary for a DBMS-agent to load the appropriate JDBC
driver and connect to the database server. An Aglet Router is required to route
aglets and messages, dispatched from a FijiApplet to any destination, and vice

52

versa, because of the Java security restrictions.

Web
Server
Agiet |
| Routec—
15) Results as an———"T" | aglet server ; y
X aglet message 4} JDBC-ODBC calt

Fig. 8. Mobile agents approach configuration (message variation)

When the user enters the first query (Figure 8), the client applet (an extension
of the FijiApplet) creates a DBMS-aglet with a specific URL-based itinerary (travel
plan) and the specified query. The DBMS-aglet travels through the aglet router
to the database server. Upon its arrival, the DBMS-aglet communicates with the
Assistant-aglet to retrieve information on the database and drivers, loads the JDBC-
ODBC driver, connects to the database server, executes the client’s request and

assembles the resulting table. After returning the query result in a message to the
client, the DBMS-aglet remains connected to the database server, waiting for a
message with new requests from the client. This message passing is implemented
implicitly as an RPC invocation from the client applet on the dispatched mobile
agent.

The cost of the initial query is

(1) Initialization phase:
(a) The time for the client to create the DBMS-aglet
(b) The time for the client to initialize the DBMS-aglet (SQL statement, itinerary,
etc.)
(c) The time for the DBMS-aglet to travel to the remote database server

)
(d) The time for the DBMS-aglet to negotiate with the assistant aglet
(e) The time for the DBMS-aglet to establish connection with the database

(2) Execution phase:
(a) The time for the DBMS-aglet to query the database and send the results

to the client using a message.

All subsequent requests require only one message from the client to DBMS-aglet,
which includes the new SQL statement, plus the execution phase.

4. Evaluation of Approaches

In this section, we will first discuss our experiments measuring the perceived client
latency, expressed in terms of average response time at the client site. Then, we
will discuss middleware scalability and express it in terms of average throughput at
the web server site under different workloads. Finally, we will compare the different
approaches in terms of their programmability.

53

Our experiments consider both small interactions and heavy cooperations. Small
interactions typically involve a small size query result (128 bytes) while heavy co-
operation involves a wide range of query result sizes. Given our interest to support
both mobile clients and clients over a wide-area network with relatively slow com-
munication links (limited bandwidth), we conducted our experiments on a wireless
1.2Mbps LAN of Pentium PCs. We used Netscape Navigator as the Web client’s
Java-enabled browser. For each approach, a sufficient number of runs were per-
formed to obtain statistically significant results.

4.1. Client Perceived Latency

4.1.1. Small Interactions

We measured the response time (a) of the first query and (b) of subsequent
queries (Figure 9). Short-duration interactions consist of a single query as opposed
to long duration ones. The execution of the first query differs from the subsequent
ones because it incurs the overhead of establishing the connection between the client
and the remote database.

:'3: § itial Query
700 @% ‘ [n] Supsequem Query
:

W

g 6.00
] 1
8E s00f
58 400
jw N

@ 0 300
(4

Applet Rm!
JDBC

Socket Serviet JMA Corba

Fig. 9. Performance of all approaches for 128 bytes result size

For the first query (short-duration interactions), the non-RPC approaches have
by far the lowest response time. This can be explained by the fact that their initial-
ization phase does not engage any special package loading by the client. Compared
to the Socket approach, the Servlet approach performs slightly worse because (a)
the communication between the client and the servlet is marshaled by the Web
server, and (b) by executing as a Web server thread, the servlet receives less CPU
time than the socket application server. Thus, servlets respond slower to requests
and take more time to assemble the query results.

From the other approaches, the JMA approach offers the best performance for
a single query. Significant part of its cost (around 2 sec) is due to the process of
dispatching the DBMS-aglet from the client applet to the aglet router on the Web
server and from there to the database server. In the case of the CORBA approach,
the first query is slightly more expensive than the one in the JMA approach because

54

of the overhead of initializing the necessary ORB classes and the binding to the
application server. This overhead is quite significant (around 2.20 sec). Following
the CORBA approach is the Java JDBC approach in which the response time of
the first query is increased by a considerable amount of time by the downloading of
the JDBC driver.

To our surprise, the RMI approach performs by far the worst for the first query.
We expected the RMI approach to exhibit better performance because, as opposed
to the other RPC approaches, it does not involve the loading of any specific pack-
age. The only way to explain this is to attribute the increased response time to the
interpreted method of RMI calls when binding the client applet to the application
server. CORBA compilers create hard-coded encoding/decoding routines for mar-
shaling of objects used as RPC parameters, whereas RMI uses object serialization
in an introspective manner. This means that (a) RMI encodes additional class in-
formation for each object passed as a RPC parameter, and (b) marshaling is done
in an interpreted fashion. Consequently, RMI remote calls are more demanding in
terms of CPU time and size of code transmitted, a fact that we observed in all our
experiments.

For subsequent queries (long-duration interactions), the performance of the
CORBA and RMI approaches dramatically improves, and becomes close to the
best performance exhibited by the Socket approach. The reason is that the client
applet is already bound to the application server and only a remote procedure call
Is required to query the database. For a similar reason, the JDBC applet approach
also exhibits a significant performance improvement for subsequent queries.

Having the DBMS-aglet already connected to the remote database and ready
to process a new query, the JMA approach also improves its response time for
subsequent queries. However, this response time is the worst of all other approaches.
We attribute this to two reasons: (1) the two required messages to implement
subsequent queries have to be routed through the aglet router, and {2) a mobile
agent is not a stand-alone process and it does not receive full CPU time.

Finally, the Servlet approach improves slightly its performance although the
steps for executing any query are the same. This improvement is due to the fact
that any subsequent connection between the client and the Web server require less
time because its URL has already been resolved in the initial query.

In order to better illustrate the overall performance of each approach, we plotted
in Figure 10 the average time required by each approach for a number of consecutive
queries. It is clear that the socket approach is the most efficient for both short- and
long-duration interactions. This is not a surprise since all other approaches are
built on top of sockets. Both the Servlet and the JMA approaches scale very badly.
The CORBA, JDBC applet, and RMI approaches appear to scale well, however,
the RMI approach appears less attractive due to its worst performance for initial

55

queries.

+
180 % Socket Tx—Sewel A
180 —+—JMA —=—— Corba L
z —A— Applet JDBC RMI 4+
S o ot
e +.+'
8 2o 4t
£ 1o B 5-0-0-0-0-0-0-0-0-0-0-0-0-0
c WMO'O x-x%
80 -+ KAAAAA
8 ot a-tBE
g ﬁW
g a0 A’&?W
= I’:!F' g-x-X7
g 2 W
o ’x,.x"
[0.0 [xzXZC

Consecutive Queries

Fig. 10. Average performance for up to 30 consecutive queries (128 bytes of result size)

4.1.2. Heavy Cooperation

In order to evaluate heavy cooperation, we adjusted the size of the query result
from 128 bytes (2 tuples) to 64 kilobytes (1000 tuples) by changing the complexity
of the SQL statement issued through the client applet. Query result size directly
affects the response time in two ways: (1) in the amount of time spent for the query
to execute, and (2) in the transport time for the results to reach the client. The
latter includes the overhead in assembling the result table. For these experiments,
we also measured response times of first and subsequent queries. Tables 1 and 2
summarize these results. In both cases, each approach exhibited similar sensitivity,
as shown in Figures 11 and 12.

Table 1. Heavy Cooperation. Average response time in seconds - initial query

Approach/Result Size | 128B 512B 1KB 5KB 10KB 20KB 64KB
Socket 0.22 0.25 0.44 0.70 1.44 4.08 29.08
Servlet 0.34 0.35 0.48 1.82 7.34 21.47 189.80

CORBA 3.21 3.31 3.32 3.36 4.22 6.96 34.93
RMI 8.15 8.37 8.50 10.67 11.66 15.73 47.03
JMA 2.48 2.60 2.61 3.11 7.86 20.57 116.12

Applet JDBC 4.03 4.04 4.12 8.80 17.32 40.63 248.00

56

Table 2. Heavy Cooperation. Average response time in seconds - subsequent query

Approach Result Size | 128B 512B 1KB 5KB 10KB 20KB 64KB
Socket 0.08 0.10 0.26 0.51 1.34 3.97 28.73
Servlet 0.31 0.32 0.39 1.73 7.15 21.26 140.00
CORBA 0.09 0.10 0.28 0.53 1.41 4.01 30.00
RMI 0.10 0.11 0.30 1.12 2.54 6.45 38.07
JMA 0.56 0.64 0.73 2.00 6.40 18.57 91.00
Applet JDBC 0.14 0.30 0.68 5.23 14.86 37.69 227.00
2.
200 —e— Socket —X~—Sendet
X
——Corba —o—RMI
——JMA ~—Applet JDBC
150
m
ke
e
S wo
R
@
®
£
i— s
(6]
w
o
S
=%
(%]
O 0 S
[B KB B 10K 20KB 54KB
Size of Query Result
Fig. 11. Initial Query
i
200
- Socket —x— Serviet
s Corba G M1
wo| | —— A ——A pplet JDBC
X
W
o
5 1o
(&)
18]
22
@
=
= se
&
j
o
L2
[
Lo AR A ¥
r B === "
288 528 KB 5k8 10K8 20KB 54KB

Size of Query Result

Fig. 12. Subsequent Query

57

The first observation is that the average response times of Java JDBC applet,
Servlet and JMA approaches increase exponentially with query result sizes larger
than 20KB. The applet JDBC approach performs by far the worst for increased
result size. This can be explained by the fact that in JDBC, rows from a query
result are retrieved one at a time. Specifically, to retrieve one row from the query
result, the client must call a method on a Java ResultSet object, which is mapped
on the remote database server through the Gateway. Consequently, for a large
size of query result, a large number of those remote calls have to take place. For
example, to retrieve the 64KB result table, the client invokes 1000 remote calls on
the database server via the gateway. These large number of sequential message
exchanges not only increase dramatically the response time but also increase the
Internet traffic.

The bad scaling of the JMA approach can be explained in the same way as
the bad performance of the Servlet approach. Both mobile agents and servlets
do not execute as stand-alone processes, and therefore, they do not receive full
CPU time and heavily depend on the supporting execution environment. The other
RPC approaches exhibit acceptable performances (close to linear for sizes above
20KB) with the CORBA approach being slightly better. As indicated above, the
implementation of RPC calls in CORBA is much faster compared to the RMI’s one.

Figures 11 and 12 clearly suggest that Java mobile agents are not practical
to be used as a simple communication mechanism compared to other approaches
like CORBA and RMI. As mentioned in the introduction, it is not appropriate to
consider Java mobile agents as yet another data shipping mechanism, but rather
as a function shipping one. The mobile agents effectiveness lies in their ability of
performing data-reduction operations such as aggregates and data mining that cut
down the size of the result to be returned to the client. Thus, JMA are feasible
only in cases where client-custom code can be shipped and execute at the server site
to perform additional filtering on the query result, as in the case of the MOCHA
database middleware system 2. Our results (see, Tables 1 and 2) indicate that
for query results of 20KB or less, the JMA approach becomes effective when they
can achieve result reduction by some factor greater than 5. For example, for 20KB
subsequent queries, in CORBA the client perceived latency is 4.01 sec, which is two
times the latency for a 5-times reduced (i.e., 4KB) result in JMA which is less than
2 sec. For query result sizes greater than 20KB, a reduction of 2 is needed to make
the JMA approach feasible.

4.2. Middleware Scalability

Although practically important, the perceived client latency experiments do not
fully measure each approach’s effectiveness because they do not capture the effects
of concurrent clients on the corresponding middleware performance. For this reason,
we measure the average throughput for each approach in terms of average number
of client requests that can be served per second by the corresponding middleware.

58

For the CORBA and RMI approaches, concurrent RPC calls from Web clients
to the application server object are handled by the underlying ORB and by the
Java virtual machine at the server site respectively. For the serviet approach, con-
current Web client connections to servlets are handled by the Web server itself and
are persistent. For the applet JDBC approach, JDBC calls from concurrent Web
clients are handled by the gateway at the server site over persistent connections.
In the socket approach, each client is served by a separate thread selected from a
pool of threads maintained by the socket application server. Similar to the other
approaches, the socket connection between the client and its server thread is per-
sistent to increase performance. Finally, for the JMA approach, one mobile agent
is dispatched from each concurrent Web client to the server site. In this approach,
however, the connection between a clients and its mobile agent is not persistent.

For our experiments, we assumed a wide range of concurrent Web clients (multi-
programming level or MPL) repeatedly issuing requests with a random *think’ time
between successive ones. Since we were only interested in the performance of the
middlewares in a steady state, the Web client programs used in these measurements
had already issued the initial query. Figures 13, 14, and 15 illustrate the average
throughput for each approach in requests served per second for MPLs between 1
and 25, and for a query result size of 1, 5, and 20 kilobyte, respectively.

25

—e— Socket
20 / —— CORBA{

=3

[

[w]

e

@

® —u— Serviet
o 10

2 //\K/ /+___+\\+__‘r —— JMA
&

& s —ar— Applet
2 M_’fﬁ——_ﬁr\xﬁ_ﬂ e
o

@

o

1 5 L % 20 25
MPL Level

Fig. 13. 1K Query result size

59

g S0t ket

//M“—' —— CORBA

L

! /// g X K TR
o
2y —%— Serviet
T M
| &7 A
22
¢ {-’“’M e Applet
4 JDBC
fid
o
1 5 19 |5 20 2
MPL Level
Fig. 14. 5K Query result size
3
—e— Socket

28

e CORBA

z ///W —o— RMI
15 // ~F —— Gerlet
L& e

/m —a— Applet
05 =

JoBC

Requests served { Second

MPL Leve!

Fig. 15. 20K Query result size

These results are generally in agreement with our results of the client perceived
latency. Perhaps the only exception is with the performance of the socket approach,
which was expected to outperform all the other ones. However, the CORBA ap-
proach exhibited higher throughput than the socket approach for increasing size
of query result. Our explanation is that the ORB bus optimizes multiple connec-
tions originating from the same sites whereas in our basic socket application server
this is not the case. Multiple socket connections are competing for network band-
width resulting in a major performance penalty in case of low bandwidth wireless
comumutiication links.

Another interesting observation is the crossover occurring between the servlet
and RMI approaches for high MPL in all the query result sizes. For low MPL,
the RMI approach exhibits higher throughput than the servlet approach. For high
MPL, that is, a large number of concurrent clients, it seems that the interpreted way
RMI handles RPC arguments contributes significantly to the system overloading,

60

causing the throughput to drop even lower than the servlet approach.

For any query result size, the applet JDBC approach performed the worse. These
results exemplify how costly is the way this approach assembles the query results.
Recall that the retrieval of each row of the result table requires s separate remote
JDBC procedure call by the client. Clearly, the applet JDBC approach is not
appropriate for any wireless and mobile environment.

The poor performance exhibited by the JMA approach raises the important
issue of site overloading and the effectiveness of an agent-hosting environment (the
Tahiti server in our case). With mobility, more agents can arrive at a site with
varying resource requirements than the server site can effectively handle. Hence,
this competition for resources, not only affect the performance of the visiting agents
but does also impact any other service provided at the hosting site. In our case,
both the Web and database server were affected, degrading their performance.

Our last observation is that with the increase of query result size, the throughput
gap among the all approaches shrinks. For query result sizes of 20K and higher,
the throughput of the socket, RMI, and servlet approaches is practically the same.
This can easily be explained because in all approaches except the applet JDBC one,
the procedure of assembling the query results is exactly the same and is carried out
entirely at the server site. It invokes a JDBC-ODBC call for each row in the result
table. Having an increasing size of query result, and therefore more result rows,
more CPU and memory resources are needed at the server site, leading also faster
to thrashing.

4.3. Programmability Comparison

In this section, we compare the different approaches in terms of development effort.
Our goal is to understand if there is any correlation or trade-off between perfor-
mance and programming complexity. To quantify the development effort, we use
the number of required system calls. The number of systems calls used in each
approach is, in some sense, analogous to the number of code lines implementing
each approach. Table 3 shows the total number of system calls required for each
approach.

A first observation is that the development effort of the client is related to the
level of abstraction of communication between the client and the middleware, in
general, and the naming scheme used to identify the database services to establish
communication, in particular. Not surprisingly, the RPC approaches involve less
complex APIs, more transparent client/server communication and hence exhibit
high programmability. All non-RPC approaches, including the JMA approach (the
RPC-like one), require more development effort and hence have low programmabil-
ity.

A second observation is that despite the fact that the JMA approach supports
RPC-like communication, it exhibits the lowest programmability as indicated by
the largest number of system calls required. Most of these system calls are used to

61

Table 3. Programmability of the approaches

Notes Socket Serviet CORBA RMI Applet JMA
_ JDBC
Total Number of System Calls 29 25 15 12 6 29
Establish Connection
At the Client 7 11 2 1 3 11
At the Middleware 11 3 8 6 0 11
Submit Query and Get Results
At the Client 3 3 1 1 3 2
At the Middleware 8 8 4 4 0 5
Client Execution Code 6K 6K 23K 9K 50K 27K
Programmability Low Low High- High High Low

construct, maintain and execute the URL-based itinerary. It seems this is a result
of the weak mobility model currently supported by most mobile agents implementa-
tions 2324, In the weak mobility model, the agent program is responsible to handle
the details of all mobility functions. In a strong mobility model 2%, agents could mi-
grate at any point during their execution and resume their execution on a different
site without any special preparation for migration.

Finally, the level of programmability does not correspond to the size of the client
executable code. Interestingly, the Non-RPC approaches, namely, Java Socket and
Servlet, support the smallest client size (6K). On the other hand, the Applet JDBC
has the largest client size of 50K: the Java applet is 6K and the JDBC driver is 46K.
The JMA approach is the second most resource demanding approach after Applet
JDBC with 27K: Java applet 10K, FijiApplet 10K and DBMS-Aglet 7K.

5. Conclusions and Future Work

In this experimental paper, we have implemented, evaluated, and compared all
currently available Java-based approaches that support persistent Web database
connectivity. Our comparison proceeded along the lines of the performance of query
processing and of the programmability of each approach.

The results of our comparison showed that:

e The CORBA approach offers high programmability and hence, is easy to develop,
while its overall performance with respect to both client perceived latency and
middleware scalability is comparable to the best performing approach that em-
ploys sockets. On the other hand, it is resource demanding and leads to clients
with big footprints. Therefore, the CORBA approach offers the best promise for
the development of large and complex Web applications, in particular, cooper-
ative interactions involving multiple queries of varying result sizes and without
resource constraints.

e For small interactions, typically involving a single query, few clients and envi-

62

ronments with resource-starved clients, the socket and servlet approaches should
be considered. These approaches yield a Web client with the smallest footprint,
Jjust 6 Kbytes. Both approaches have low programmability but relative to each
other, the servlet approach is easier to develop than the socket approach. On the
other hand, the socket approach exhibits better performance than servlets. Thus,
for such interactions, the trade-off between these approaches is performance and
programmability.

e Clearly, the best performance is not always achievable with high programmability
and low resource requirements. The surprising example here is the RMI approach
due to its popularity which can be attributed to its high programmability. De-
spite RMD’s popularity in the fixed network environments, its implementation
needs to be optimized before it can effectively be utilized in mobile and wireless
environments.

e Finally, the JMA approach cannot support interactions that require movement
or exchange of large amounts of data such as a large number of consecutive
queries with increased size of query result. Hence, it is necessary to develop more
efficient mobile agent infrastructures, if the full potential of mobile agents is to
be explored.

The recent advancements of the Web technology and mobile computing led to
a renewed interest on mobile agents technology. Given this renewed interest, our
study provided an insight to potential scalability problems with the currently avail-
able mobile agent implementations. Given that CORBA offers the best overall
performance, as part of our future work, we will investigate the possibility of merg-
ing mobile agents and the CORBA technology in order to facilitate a scalable and
efficient JMA-based Web database connectivity. Our goal is not to make mobile
agents yet another communication paradigm but instead a more effective distributed
computing one.

Acknowledgments

The authors thank the anonymous reviewers for their very helpful suggestions. This
work was partially supported by NSF 11S-9812532, and AFOSR F49620-98-1-043
awards.

References

1. H. Maurer, Hyperwave: The Next Generation Web Solution { Addison-Wesley, 1996).

2. B. Jepson, Java Database Programming (Wiley Computer Publishing, 1997).

3. G. Ehmayer, G. Kappel, and S. Reich, Connecting Databases on the Web: A Taxonomy
of Gateways, in Proc. 8th DEXA International Conference and Workshops, September
1997, 1-15.

4. A. Lambrinidis, and N. Rousopoulos, Generating dynamic content at database-backed
web server: cgi-bin vs mod_perl, Sigmod Record, 29(1) (2000), 26-31.

63

[54]

© W o

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
22.

23.

24.

25.

R. Orfali, and D. Harkley, Client Server Programming with Java and CORBA (Whiley
Publishing, 1998).
Sun Microsystems Inc., Java Sockets Documentation, (<http://java.sun.com/docs>).

. J. Goodwill, Developing Java Serviets (Sams Publishing, 1999).

T. B. Downing, Java RMI: Remote Method Invocation (IDG Books Worldwide, 1998).

. Object Management Group. The Common Object Request Broker: Architecture and

specification (1998).

D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G. Tsudik, Itinerant Agents
for Mobile Computing, IEEE Personal Communications, 2(5) (1995) 34-49.

Sun Microsystems Inc., Java Server Pages: Dynamically Generated Web Content
(<http://java.sun.com/products/jsp/>).

Sun Microsystems Inc., Java Web Server: Create and Deploy Dynamic Web Pages in
a Snap (<http://www.sun.com/software/jwebserver/>).

Oracle, XSQL (<http://technet.oracle.com/free>).

DARPA, ninite The CoABS Grid (<http://coabs.globalinfotek.com/>).
Hewlett-Packard, E*Speak (<http://e-speak.hp.com>>).

E. Anuff, Java Sourcebook (Whiley Publishing, 1996).

Sun Microsystems Inc., JDBC drivers,
(<http://java.sun.com/products/jdbe/drivers.html>)

Borland Inc., Visibroker for Java V.2.0(<http://www.inprise.com /visibroker>).

S. Papastavrou, G. Samaras, and E. Pitoura, Mobile Agents for WWW Distributed
Database Access, in Proc. 14th IEEE Int’l Conf. on Data Engineering, March 1999,
228-237.

S. Papastavrou, G. Samaras and E. Pitoura, Mobile Agents for World Wide Web Dis-
tributed Database Access, nineit IEEE Transactions on Knowledge and Data En-
gineering, 12(5) (2000) 802-820.

IBM Japan Research Group, Aglets Workbench (<http:/www.trl.ibm.co.jp/aglets>).
M. Rodriguez-Martinez, and N. Rousopoullos, MOCHA: A Self-Extensible Database
Middleware System for Distributed Data Sources, in Proc. ACM Sigmod Conference,
May 2000, 213-224.

D. Kotz, Robert S. Gray, S. Nog, D. Rus, S. Chawla, and G. Cybenko, AGENT TCL:
‘Targeting the Needs of Mobile Computers, IEEE Internet Computing, 1(4) (1997) 58-
67.

D. Wong, N. Paciorek, T. Walsh, J. DiCeie, M. Young, and B. Peet. Concordia: An in-
frastructure for Collaborating Mobile Agents, in Proc. 1st Int’l Workshop on Mobile
Agents, 1997, 367-376.

N. Suri, J.M. Bradshaw, M. R. Breedy, P.T. Groth, G.A. Hill, and R.Jeffers. Strong
Mobility and Fine-grained Resource Control in NOMADS, in Proc. 2nd Int’l Sym-
posium on Agent Systems and Applications and Jth Int’ Symposium on Mobile
Agents, September 2000, 1882:2-15.

64

IFCIS/VLDB Cooperative Information Systems, 2000

An Evaluation of the Java-based Approaches to Web
Database Access*

Stavros Papastavrou', Panos Chrysanthis', George Samaras’, Evaggelia Pitoura®

! Dept. of Computer Science, University of Pittsburgh
{stavrosp, panos} @cs.pitt.edu
2 Dept. of Computer Science, University of Cyprus
cssamara@cs.ucy.ac.cy
3 Dept. of Computer Science, University of Toannina
pitoura@cs.uoi.gr

E
g

Abstract. Given the undeniable popularity of the Web, providing efficient
and secure access to remote databases using a Web browser is crucial for the
emerging cooperative information systems and applications. In this paper, we
evaluate all currently available Java-based approaches that support persistent
connections between Web clients and database servers. These approaches in-
clude Java applets, Java Sockets, Serviets, Remote Method Invocation,
CORBA, and mobile agents technology. Our comparison is along the impor-
tant parameters of performance and programmability.

1 Introduction

Providing efficient and secure access to remote databases using a Web browser [2,6]
is crucial for the emerging cooperative information systems, such as Virtual Enter-
prises. A number of methods for Web database connectivity and integration have
been proposed such as CGI scripts, active pages, databases speaking http, external
viewers or plug-ins, and HyperWave [9]. These methods enhance the Web server
capabilities with dynamic functionality for interactive and cooperative applications
to create database connections, execute queries and transactions, and generate dy-
namic Web pages. However, there is an increasing interest in those that are Java-
based due to the inherent advantages of Java, namely, platform independence sup-
port, highly secure program execution, and small size of compiled code.

Several Java-based methods are currently available that can be used for the de-
velopment of Web cooperative information systems but in the best of our knowl-
edge, there is no quantitative comparison of them in a database context. Existing
studies either primarily focused on the various server side scripting mechanisms to
support database connectivity (e.g., [8, 12]), or evaluated the Java client/server

* This work was partially supported by NSF IRI-9502091 and 11S-9812532, and AFOSR
F49620-98-1-043 awards.

65

communication paradigm without any database connectivity or lengthy computa-
tions {e.g., [14]). This experimental paper contributes a comparison of the six Java-
based approaches that support persistent database connections, specifically, Java
applets using JDBC (Applet JDBC), Java Sockets, Java Servlets, Remote Method
Invocation (RMI), CORBA, and Java Mobile Agents (JMA). We focus on these
methods because of their support for persistent database connections, which are
essential for cooperative environments with long, and repeated data retrievals and
updates.

For our evaluation, we used each approach to implement a Web client accessing
and querying a remote database. Each approach differs in the way the client estab-
lishes connection with remote database servers with the help of a middleware and
the implementation of the middleware. Depending on the way the client establishes
connection with the middleware, the approaches can be classified as (1) non-RPC
ones, that do not provide for remote method invocation mechanism, (2) RPC ones
with clear remote method invocation semantics, and (3) RPC-like ones involving
mobile agent technology.

We compared the behavior of the different approaches along the following two
important parameters: (1) performance expressed in terms of response time under
different loads, and (2) programmability expressed in terms of the number of system
calls at the client and the server site. The two salient resuits of our study are: (1)
Best performance is not always achievable with high programmability and low re-
source requirements, and (2) the mobile agent technology needs to improve its pro-
grammability while giving particular emphasis in its infrastructure.

In the next section, we provide a brief review of Java and Java database connec-
tivity. In Section 3, we first discuss our experimental testbed and then elaborate on
the implementation details of the six approaches under evaluation. In Section 4, we
discuss our performance evaluation results whereas in Section 5, we compare the
different approaches from programmability point of view.

2 Background: Java and Java database connectivity

Java [17,1] is an object-oriented programming language designed to support the
development of distributed, secure, and portable applications. The uniqueness of
Java lies on the fact that its compiled code can run on any platform, which supports
a Java runtime environment. Further, Java programs can run in Java-enabled Web
browsers in the form of applets, which are downloaded as part of an html page.
Security is achieved by restricting the execution of applets within the context of the
client's web browser, and by permitting the communication of applets only with
their originating web server. That is, Java applets are not allowed to access any
system resources or communicate with any arbitrary site. Java’s portability is further
enhanced by other safety features, such as the absence of pointers, and automatic
array bound check. :

Two features of Java, important for building cooperative database applications,
are: (a) its graphical interface library that supports the development of sophisticated

66

|
|
;
i

interfaces, and (2) its database connectivity interface (JDBC API) that facilitates
application access to relational databases over the Web at different URLSs [11].

The JDBC API is implemented by various drivers, executing under the control of
a JDBC manager [19]. A JDBC driver can be implemented in four different ways,
as shown in Figure 1. These drives differ in two significant ways: (1) the size of
their downloadable code, and (2) in the way they support multiple database connec-
tions.

Client Layer

JDBC-ODE:
Birdge Driver
Qypet)

DBC Driver

% Jblcc:;::nm ‘ JD}:;:':N. %

Figure 1: Standard JDBC Methodologies

The type 1 JDBC driver, namely, the JDBC-ODBC Bridge driver, translates
JDBC calls to ODBC ones and is suitable to access databases with only ODBC in-
terface. A type 1 driver requires remote clients to pre-install some ODBC binary
code and is not designed to be downloadable by Java applets.

The type 3 IDBC driver, the net-protocol fully Java technology-enabled driver, is
the most flexible with Java applets. It is written entirely in Java and can be fully
downloaded at run time, requiring no code pre-installation. A type 3 driver trans-
lates a client’s query into an intermediate language that is converted into a vendor-
specific protocol by a middle-tier gateway. The more vendor protocols the gateway
supports, the more databases a client can access, without downloading additional
drivers.

3 The Experimental Testhed

We use each Java method to implement a Web client querying a remote database.
Our testbed is structured along a three-tier client/middleware/database model. Two
design principles were adopted in the selection of the various components during the
development of the testbed. First, our Web clients should be lean for allowing fast
downloads, and therefore increasing support for wireless clients. Second, no a-priori
configuration of the Web client should be necessary to run the experiments in order
to maintain portability, and therefore, support arbitrary clients.

67

Our Web client program is a Java applet, installed on a Web server along with an
html page. Every experiment was initiated by pointing to the html page from a re-
mote computer. After the Java applet was downloaded and initialized at the client
computer, database connectivity was established, and queries were issued through
the applet’s GUI to be executed on the remote database server. Our remote database
system, a 3-table Microsoft Access, was on the same machine with the Web server.

The role of the middleware is to accept client requests, execute them on the data-
base server on behalf of the client, and return the results back to it. Due to secu-
rity/communication restrictions of Java applets, part of the middleware in all ap-
proaches has to execute on the Web server machine. In the experiments reported
here, because the database server co-resides with the Web server, the entire middle-
ware in all approaches executes on the same machine. Given that an Access data-
base can only be accessed using ODBC, the middleware of all approaches except
Applet IDBC, use a JDBC-ODBC (type 1) driver to connect to the database. In the
Applet JDBC approach, a type 3 JDBC driver is used whose gateway converts the
JDBC calls into ODBC ones. To improve performance, the middleware attempts to
connect to the database server when it is activated and before any client request is
submitted.

In the rest of this section, we elaborate on the implementation of each approach.
Initialization phase is the procedure for establishing database connectivity, and
execution phase is the procedure for querying the database after database connection
is established.

3.1 Non-RPC Approaches: Java Socket and Java Servlet

Both the Java Socket and Java Servlet approaches use sockets to connect a client
and the middleware program. In the Java Socket approach, sockets are created by
the clients, whereas in the Servlet approach, are created by the run-time environ-
ment.

3.1.1 The Java socket approach. In this first approach, the middleware is a stand-
alone Java application server running on the Web server machine. The client col-
laborates with the application server by establishing an explicit socket connection
[18]. Figure 2 illustrates the steps involved for the first query. The applet submits
the query through the socket connection to the application server, which decodes the
incoming stream of data, and executes the query on the database server. The result
table is then passed to the client applet again by the means of data streams.

68

[1] Applat

—— o [2] Socket ™ Web
connection Server [3] JDBC-ODBC
issi call

9 & subi of
3 \ query \j Socket |{
. f Application Server
Glient 14] Resutt in byte "] ia

streams

Figure 2: The Socket approach

The cost of the first query in this approach is
1. Initialization phase:
A. The time for the client to open a socket connection with the application
server.
2. Execution phase:
A. The time for the client to pass to the application server the data stream
containing the SQL statement.
B. The time for the application server to execute the query, obtain the results
and return them to the client.
All subsequent queries require only the execution phase.

3.1.2 Java Servlets Approach. In the Java Servlet approach, the middleware pro-
gram is a Java servlet 5], which is a Java program that runs as a child process
within the context of a Web server program. The Web server is responsible for load-
ing, maintaining, and terminating servlets. In our case, servlets were loaded during
the Web Server start-up time.

Client’s queries are routed by the Web server to a servlet, which submits them to
the database server for processing. The results are returned to the client again
through the Web server. All queries involve both an initialization and an execution
phase. Thus, the cost of any query in this approach is

1. Initialization phase:

A. The time for the client to open a URL connection with the Web server.

2. Execution phase:

A. The time for the applet to invoke, through the Web server, the correspond-
ing servlet passing the SQL statement as a parameter (stating explicitly the
servlet name and type of operation).

B. The time for the servlet to execute the request, obtain and return the entire
result table to the client.

69

3.2 RPC approaches: Java RMI, CORBA, and Applet JDBC

The RPC approaches can be classified based on whether or not the client directly
maintains the database connection. In the RMI and CORBA approaches, the connec-
tion is maintained by the middleware whereas in the Applet JDBC approach, by the
web client.

3.2.1 The RMI approach. Java Remote Method Invocation (RMI) [4] is a Java
application interface for implementing remote procedure calls between distributed
Java objects. In RMI, the middleware consists of two objects: The first object is the
application server which is responsible for handling requests by allowing clients to
remotely invoke methods on it. The second object is the installer object, which is
used to start up the application server, and register it under a unique service name
with the Java virtual machine running on the Web server.

Figure 3 shows the steps for the first query. The client calls a bind method of the
RMI to obtain a reference of the application server. The parameters of this bind
method are the URL of the machine on which the application server object was
registered, and the unique service name with which it was registered. Using this
reference, the client calls a method on the remote application server passing the
query as a parameter. The application server executes the query at the database
server, and returns the result table to the client as the return value of the method
called.

(1 Applat— |
2 ™ Web
T ——f2] aMi bincing Sarver {3} JDBC-ODB
$RPC cal
RMI Application {
t [4] Results as a Server |
Client return vajue ——"]
ol RPC

Figure 3. RMI approach

The cost of the initial query is
1. Initialization phase:
A. The time for the applet to obtain a reference to the remote application
server (bind to it).
2. Execution phase:
A. The time for the client to invoke a method on the application server passing
the SQL statement as a parameter.
B. The time for the application server to execute the SQL statement, obtain
and return the results.
The time required for a subsequent query is the execution phase.

3.2.2 The CORBA approach. CORBA, the Common Object Gateway Request

Broker Architecture [13], is an emerging distributed object standard that defines
client/server relationships between objects in a common interface language. Unlike

70

RMI, CORBA objects can be implemented in any programming language. In order
for a CORBA client object to utilize a CORBA server object, an implementation of
CORBA’s basic functionality, called the Object Request Broker (ORB), has to be
loaded at both the client and the server sites. In our testbed we use Visigenic’s Visi-
broker for Java [20], which is also included in Netscape Navigator and hence, the
client does not download the ORB classes from the Web server which would have
been the alternative. For security purposes, CORBA allows an applet to bind to a
remote CORBA server object only through a firewall called the TIOP (Internet Inter-
ORB Protocol) Gatekeeper [21], installed at the Web server machine from which the
applet is downloaded. That is, the IIOP Gatekeeper is responsible for routing the
client’s calls on the loaded ORB, and to the application server.

Except from the IIOP Gatekeeper, the middleware in the CORBA approach is
similar to the one in the RMI approach. There is an application server object and an
installer object. The installer object in this case is also used to load the ORB, and
register the application server with a unique service name with the ORB.

The steps required for the first query are shown in Figure 4. After the client loads
the ORB, it bounds to the application server via the Gatekeeper by calling a special
bind method and passing as parameter only the unique service name of the applica-
tion server. The client then calls the appropriate method on the application server to
carry out the request. The application server will execute the client’s request on the
database, and return the result table as the return value of the method called.

1) Applot———rnr_. [
[1] App! Web
. [2} Corba Server CORBA
biding .14 AP
& RPC [{1 Server N
- Gaiekeeper
[4] Results as a || g~
+ ORB Y return value —"" | ORB

of RPC {3] JDBC-ODBC calt

Figure 4: CORBA approach

The cost of the first query is
1. Initialization phase:
A. The time for the client to initialize core ORB classes.
B. The time for the client to bind to the application server.
2. Execution phase:
A. The time for the client to invoke a method on the application server
passing the SQL statement as a parameter.
B. The time for the application server to execute the SQL, obtain and return
the results to the client.
Execution phase is only required for any subsequent query.

3.2.3 The Applet JDBC approach: Applets that use directly the JDBC APIL In
this approach, the client applet downloads a type 3 JDBC driver and uses directly
the JDBC API to connect to the database. The Gateway of the type 3 driver plays
the role of the middleware. We used a type 3 driver because it is the only JDBC

71

driver that satisfies our two design principles discussed at the beginning of this sec-
tion.

[1] Applet + JDBC
driver T Web
&) c"a[",ac Server

|3} Vendor-specific
call

\[4] Rosult Sot h or ODBC call

Figure 5: The Applet JDBC approach using a type 3 JDBC driver

After the client downloads the JDBC driver, it establishes database connectivity
issuing JDBC calls on the Gateway, which are subsequently mapped on the database
server. Figure 5 illustrates the four steps involved in the first query. Their cost is

1. Initialization phase:

A. The time for JDBC driver to be downloaded from the Web server and
initiated by the applet.

B. The time for the applet to establish connection to the database though the
gateway program.

2. Execution phase:

A. The time for the applet to issue an SQL statement to the database and
obtain the results.
All subsequent queries require only the execution phase.

3.3 RPC-like approach: Java Mobile Agents (JMA).

Finally, in this subsection, we describe the approach of using mobile agents to
achieve Web database connectivity, and specifically, the best of the three variants
proposed in [15]. Mobile agents [3, 7] are processes capable of pausing their execu-
tion on one machine, dispatching themselves on another machine and resuming their
execution on the new machine. The idea in the JMA approach is to use one or more
mobile agents to implement the middleware and carry out the requests of the client.
In the best variant, the results as well as subsequent queries are sent to and from the
client using a message. This message passing is implemented implicitly as an RPC
invocation from the client applet on the dispatched mobile agent.

For our experiments, we used Aglets [10], for two reasons: (a) availability of
code, and (b) support for hosting mobile agents within applets without significant
overhead based on our prior experience with their use. Aglets can be fired from
within a special applet, called the FijiApplet that provides an aglet execution envi-
ronment similar to the general stand-alone aglet runtime environment called the
Tahiti Server.

In the JMA approach, the middleware consists of three components: The DBMS-
aglet, the (Stationary) Assistant-aglet and the Agler Router. The DBMS-aglet can
connect to a database and submit queries. Each database server is associated with

72

an Assistani-aglet identified by a unique aglet ID and the URL of its Tahiti server.
An Assistant-aglet provides the information necessary for a DBMS-agent to load the
appropriate JDBC driver and connect to the database server. An Aglet Router is
required to route aglets and messages, dispatched from a FijiApplet to any destina-
tion, and vice versa, because of the Java security restrictions. An aglet created
within a FijiApplet is neither allowed to dispatch, nor to send a message directly to
any URL other than the Web server URL.

[1] Applet ~["Web

2] DBMS-aglet
- 2] avels gt Sarver Amslanl (3] gets DBMS

with request \ "

¢ Aglet '"

o Roj *

Client ,/JJN" Tahit
Llﬂﬂ?;ﬂs;:g? — aglet sarver 4] JDBC-ODBC call

Figure 6: Mobile agents approach configuration (message variation)

When the user enters his first query (Figure 6), the client applet (an extension of
the FijiApplet) creates a DBMS-aglet with a specific URL-based itinerary (travel
plan) and the specified SQL statement. The DBMS-aglet travels through the aglet
router to the database server machine. Upon its arrival, the DBMS-aglet communi-
cates with the Assistant-aglet to retrieve information on the database and the avail-
able JDBC driver. It then loads the JDBC-ODBC driver, connects to the database
server and executes the client’s request. After sending the query result in a message
to the client, the DBMS-aglet remains connected to the database server, waiting for
a message with new requests from the client. The cost of the initial query is

1. Initialization phase:

A. The time for the client to create the DBMS-aglet

B. The time for the client to initialize the DBMS-aglet (SQL statement,
itinerary, etc.)

C. The time for the DBMS-aglet to travel to the remote database server

D. The time for the DBMS-aglet to negotiate with the assistant aglet

E. The time for the DBMS-aglet to establish connection with the database

2. Execution phase:

A. The time for the DBMS-aglet to query the database and send the results
to the client using a message.
All subsequent requests required only one message from the client to DBMS-aglet,
which includes the new SQL statement, plus the execution phase.

4 Performance Evaluation

We contacted two sets of experiments to evaluate the ability of each approach to
support (1) small interactions that typically involve a small size of query results
(128 bytes), and (2) heavy cooperation that involve a wide range of query results.

73

Given our interest to support both mobile clients and clients over a wide-area net-
work with relatively slow communication links (limited bandwidth), we contacted
our experiments on a wireless 1.2Mbps LAN of Pentium PCs. We used Netscape
Navigator v4.6 as the Web client’s Java-enabled browser. For each approach, a
sufficient number of runs were performed to obtain statistically significant results.

4.1 Small Interactions

We measured the response time (a) of the first query and (b) of subsequent queries
(Graph 1). Short-duration interactions consist of a single query as opposed to long-
duration ones. The first query differs from the subsequent ones because it incurs the
overhead of establishing the connection between the client and the remote database.

Response Time (Seconds)

Socket Serdet JMA Corba Applet RMI
JoBC

Graph 1. Performance of all approaches for 128 bytes result size

For the first query (short-duration interactions), the non-RPC approaches have by
far the lowest response time. This can be explained by the fact that their initializa-
tion phase does not engage any special package loading by the client. Compared to
the Socket approach, the Servlet approach performs slightly worse because (a) the
communication between the client and the servlet is marshaled by the Web server,
and (b) by executing as a Web server thread, the servlet receives less CPU time than
the socket application server. Thus, servlets respond slower to requests and take
more time to assemble the query results.

From the other approaches, the JMA approach offers the best performance for a
single query. Significant part of its cost (around 2 sec) is due to the process of dis-
paiching the DBMS-aglet from the client applet to the aglet router on the Web
server and from there to the database server. In the case of the CORBA approach,
the first query is slightly more expensive than the one in the JMA approach because
of the overhead of initializing the necessary ORB classes and the binding to the
application server. This overhead is quite significant (around 3.20 sec). Following
the CORBA approach is the Java JDBC approach in which the response time of the

74

first query is increased by a considerable amount of time by the downloading of the
JDBC driver.

To our surprise, the RMI approach performs by far the worst for the first query.
We expected the RMI approach to exhibit better performance because, as opposed
to the other RPC approaches, it does not involve the loading of any specific pack-
age. The only way to explain this is to attribute the increased response time to the
interpreted method of RMI calls when binding the client applet to the application
server. CORBA compilers create hard-coded encoding/decoding routines for mar-
shaling of objects used as RPC parameters, whereas RMI uses object serialization in
an introspective manner. This means that (a) RMI encodes additional class informa-
tion for each object passed as a RPC parameter, and (b) marshaling is done in an
interpreted fashion. Consequently, RMI remote calls are more demanding in terms
of CPU time and size of code transmitted, a fact that we observed in all our experi-
ments.

For subsequent queries (long-duration interactions), the performance of the
CORBA and RMI approaches dramatically improves, and becomes close to the best
performance exhibited by the Socket approach. The reason is that the client applet is
already bound to the application server and only a remote procedure call is required
to query the database. For a similar reason, the JDBC applet approach also exhibits
a significant performance improvement for subsequent queries.

Having the DBMS-aglet already connected to the remote database and ready to
process a new query, the JMA approach also improves its response time for subse-
quent queries. However, this response time is the worst of all other approaches. We
attribute this to two reasons: (1) the two required messages to implement subsequent
queries have to be routed through the aglet router, and (2) a mobile agent is not a
stand-alone process and it does not receive full CPU time.

Finally, the Servlet approach improves slightly its performance although the steps
for executing any query are the same. This improvement is due to the fact that any
subsequent connection between the client and the Web server require less time be-
cause the URL of the Web server has already been resolved in the initial query.

Response Time {Seconds)

2 3 4 5 8 7 8 9 0 11 12 13 % 15 16 7V B 19 M 2 2 23 M X 2 27 ¥ 2D
Consecutive Queries
—=—Socket & Serviet ~—a&— JMA —O-—Corba 4+ Applet JDBC —&8— RMI

75

Graph 2: Average performance for up to 30 consecutive queries (128 bytes of result size)

In order to better illustrate the overall performance of each approach, we plotied
in Graph 2 the average time required by each approach for a number of consecutive
queries. It is clear that the socket approach is the most efficient for both short and
long interactions. This is not a surprise since all other approaches are built on top of
sockets. Both the Servlet and JMA approaches scale very badly. The CORBA,
IDBC applet, and RMI approaches appear to scale well, however, the RMI approach
appears less attractive due to its worst performance for initial queries.

250
20 T —m—serviet «
i)
H —a— Corba
2150 4
o [V —
o100 |
g —e— Applet JDBC
& 50

0 ‘__.r_‘zéd/
5KB 10KB 20KB 64KB
Size of Query Result

Graph 3. Subsequent Query

4.2 Heavy Cooperation

In order to evaluate heavy cooperation we adjusted the size of the query result from
5 kilobytes (95 tuples) to 64 kilobytes (1000 tuples) by changing the complexity of
the SQL. statement issued through the client applet.Query result size directly affects
the response time in two ways: (1) in the amount of time spent for the query to exe-
cute, and (2) in the transport time for the results to reach the client. For these ex-
periments, we also measured response times of first and subsequent queries. In both
cases, each approach exhibited the similar sensitivity which is shown in Graphs 3.
The first observation is that the average response times of Java JDBC applet and
JMA approaches increase exponentially with query result sizes larger than 20KB.
The JDBC applet approach performs by far the worst for increased result size. This
can be explained by the fact that in JDBC rows from a query result are retrieved one
at a time. Specifically, to retrieve one row from the query result, the client must call

76

a method on a Java ResultSet object, which is mapped on the remote database server
through the Gateway. Consequently, for a large size of query result, a large number
of those remote calls have to take place. In that case, large query results not only
increase dramatically the response time but they also increase the Internet traffic.

The bad scaling of the JMA approach can be explained in the same way as the
bad performance of the Servlet approach. Both mobile agents and servlets do not
execute as stand-alone processes, and therefore, they do not receive full CPU time
and heavily depend on the supporting execution environment. The other RPC ap-
proaches exhibit acceptable performances (close to linear for sizes above 20KB)
with the CORBA approach being slightly better. As indicated above, the implemen-
tation of RPC calls in CORBA is much faster compared to RMI’s one.

5. Programmability Comparison

In this section, we compare the different approaches in terms of development effort.
Our goal is to understand if there is any correlation or trade-off between perform-
ance and programming complexity. To quantify the development effort, we use the
number of required system calls. The number of systems calls used in each approach
is, in some sense, analogous to the number of code lines implementing each ap-
proach.

Table 1 shows the total number of system calls required for each approach. Table
1 also distinguishes between the number of system calls required to establish com-
munication between the Web client and the middleware, and the number of calls
required to submit a query and get back the results.

A first observation is that the development effort of the client is related to the
level of abstraction of communication between the client and the middleware, in
general, and the naming scheme used to identify the database services to establish
communication, in particular. Not surprisingly, the RPC approaches involve less
complex APIs, more transparent client/server communication and hence exhibit high
programmability. All non-RPC approaches, including the JMA approach (the RPC-
like one), require more development effort and hence have low programmability.

A second observation is that despite the fact that the JMA approach supports
RPC-like communication, it exhibits the lowest programmability as indicated by the
largest number of system calls required. Most of these system calls are used to con-
struct, maintain and execute the URL-based itinerary.

Total Number
Establish At the 7 11 2 1 3 11
Connection Client
At the 11 3 8 6 0 11
Middleware

77

Submit Query At the 3 3 I 1 3 2
and Get Results Client

At the 8 8 4 4 0 5
Middleware
Client 6K 6K 23K 9K 50K 27K
Execution Code
Programmability Low Low High High High Low

Table 1: Programmability of the approaches

Finally, the level of programmability does not correspond to the size of the client
executable code. Interestingly, the Non-RPC approaches, namely, Java Socket and
Servlet, support the smallest client size (6K). On the other hand, the Applet JDBC
has the largest client size of 50K: the Java applet is 6K and the JDBC driver is 46K.
The JMA approach is the second most resource demanding approach after Applet
JDBC with 27K: Java applet 10K, FijiApplet 10K and DBMS-Aglet 7K.

6 Conclusions and Future Work

In this experimental paper, we have implemented, evaluated, and compared all cur-
rently available Java-based approaches that support persistent Web database connec-
tivity. Our comparison proceeded along the lines of the performance of query proc-
essing and of the programmability of each approach.

The results of our comparison showed that the CORBA approach offers high pro-
grammability and hence, is easy to develop, while its performance is comparable to
the best performing approach that employs sockets. Therefore, the CORBA ap-
proach offers the best promise for the development of large Web applications, in
particular, in those with long cooperative interactions involving multiple queries of
varying result sizes. For short interactions, typically involving a single query, and
environments with resource-starved clients, the socket and servlet approaches should
be considered. These approaches yield Web client with the smallest footprint, just 6
Kbytes. Clearly, the best performance is not always achievable with high program-
mability and low resource requirements.

The recent advancements of the Web technology and mobile computing led to a
renew interest on mobile agents technology. Given this renewed interest, our study
provided an insight to potential scalability problems with the currently available
mobile agent implementations. The JMA approach cannot support interactions that
require movement or exchange of large amounts of data such as large number of
consecutive queries with increased size of query result. Hence, it is necessary to
develop more efficient mobile agent infrastructures, if the full potential of mobile
agents is to be explored. As part of our future work, we investigate the possibility of
merging mobile agents and the CORBA technology in order to facilitate a scalable
and efficient IMA-based Web database connectivity.

78

References

s

11.
12.

13.
14.
15.
16.
17.
18.

19.

E. Anuff. Java Sourcebook. Whiley Publishing, 1996.

T. Berners-Lee and D. Connolly. Hypertext Markup Language Specification 2.0, Inter-
net Draft, Internet Engineering Task Force (IETF), HIML Working Group. Available at
<www.ics.uci.edw/ietf/html/html2spec.ps.gz>, June 1995.

D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parxis, and G. Tsudik. Itinerant Agents
for Mobile Computing. IEEE Personal Communications, Vol. 2, No. 5, October 1993.
T. B. Downing. Java RMI: Remote Method Invocation. IDG Books Worldwide, 1998.

J. Goodwill. Developing Java Servlets. Sams Publishing, 1999.

S. P. Hadjiefthymiades and D. I. Martakos. A Generic Framework for the Development
of Structured Databases on the WWW. Fifth Int’l WWW Conference, May 1996.

C. G. Harrison, D. M. Chessm, A. Kershenbaum. Mobile Agents: Are they a good idea?
Research Report, IBM Research Division, 1994.

G. Helmayer, G. Kappel, and S. Reich. Connecting Databases on the Web: A Taxonomy
of Gateways. Eighth Int’l DEXA Conference, Sept. 1997.

H. Maurer. Hyperwave: The Next Generation Web Solution, Addison-Wesley, 1996.

. IBM Japan Research Group. Aglets Workbench. Web site:

<http:/www.trl.ibm.co.jp/aglets>.

B. Jepson. Java Database Programming. Wiley Computer Publishing, 1997.

A. Lambrinidis and N. Rousopoulos. Generating dynamic content at database-backed
web server: cgi-bin vs mod_perl. Sigmod Record, March 2000.

Object Management Group. The Common Object Request Broker: Architecture and
specification. February 1998.

R. Orfali, D. Harkley. Client Server Programming with Java and CORBA. Second Edi-
tion. Whiley Publishing, 1998.

S. Papastavrou, G. Samaras, and E. Pitoura. Mobile Agents for WWW Distributed
Database Access. Fourteenth IEEE Int’l Conference on Data Engineering, Feb. 1999.
Sun Microsystems Inc., Java Development Kit, <http://java.sun.com/jdk>.

Sun Microsystems Inc. Java Sockets Documentation, <http://java.sun.com/docs>.

Sun Microsystems Inc., JDBC drivers,
<http://java.sun.com/products/jdbc/drivers.htm1>.

Visibroker for Java: Programmer’s Guide, V.3.0. Borland,
<http://www.inprise.com/visibroker>.

79

Proc. of the 10th IEEE Mediterranean Electrotechnical Conference, 2000

A Survey on the Java-based Approaches for Web Database Connectivity'

Stavros Papastavrou®, Panos K. Chrysanthis’, George Samaras®, Evaggelia Pitoura®

Abstract

The undeniable popularity of the web makes the efficient
accessing of distributed databases from web clients an
important topic. Various methods for web database
integration have been proposed but recently there is an
increasing interest on those based on Java-based ones. This is
due to the inherent advantages of Java, which supports
platform independence and secure program execution, and
produces a small size of compiled code. In this experimental
paper, we evaluate all currently available Java-based
approaches. These include Java applets, Java Sockets,
Servlets, Remote Method Invocation, CORBA, and Mobile
Agents. To this end, we implemented a Web client accessing a
remote database using each of these approaches and compared
their behavior along the following important parameters: (1)
performance expressed in terms of response time under
different loads, (2) transparency of communication expressed in
terms of complexity of networking API, and (3) extensibility
expressed in terms of ease of adding new components.

Keywords: Distributed Databases, WWW, Java Mobile Agents,
Distributed Objects, CORBA

I. INTRODUCTION

Providing efficient access to distributed databases from
Web clients using a Web browser [2] is crucial for the
emerging database applications such as E-Commerce.
Several methods for Web database connectivity and
integration have been proposed such as CGl scripts, active
servers pages, server side include, databases speaking http,
external viewers or plug-ins, proxy-based, and HyperWave
[4]. However, there is an increasing interest in those that are
Java-based due to the inherent advantages of Java [1],
namely, platform independence support, secure program
execution, and production of a small size of compiled code.

Several Java-based methods are currently available for
Web database integration but in the best of our knowledge,
there is no quantitative comparison of them. This
experimental paper contributes such a comparison.
Specifically, it evaluates six approaches, namely, Java
JDBC applet, Java Sockets [7], Serviet {7}, Remote Method
Invocation (RMI) [7], CORBA [9], and Java mobile agents
(JMA) [3]. Each approach differs in the way the client
establishes connection with remote database servers.

For our evaluation, we used each of these approaches
to implement a Web client accessing a remote database and

: This work was partially supported by NSF grants IR[-9502091 and 1iS-
9812532, and AFOSR award F49620-98-1-043.

2 Computer Science Dept., Univ. of Pittsburgh, PA 15260, USA.

3 Computer Science Dept., Univ. of Cyprus, Nicosia, Cyprus.

4 Computer Science Dept., Univ. of loannina, loannina, Greece.

80

compared their behavior along the following important
parameters: (1) performance expressed in terms of response
time under different loads, (2) transparency of
communication expressed in terms of complexity of
networking API, and (3) extensibility expressed in terms of
ease of adding new components. Further, we characterized
these approaches in terms of the total development effort
based on lines of code at both the client and the server side
in conjunction with the two latter parameters, namely,
transparency and extensibility.

In the next section, we briefly describe our testbed. In
Sections III to IV, we elaborate on the characteristics of
each approach when comparing them along the dimensions
of communication transparency and extensibility. In section
VI, we present our performance evaluation results.

II. EXPERIMENTAL TESTBED

Two design principles were adopted in the selection of the
various components during the development of the testbed.
First, our Web clients should be lean with the purpose of
allowing fast downloads and therefore increasing support
for wireless and mobile clients. Second, no a-priori
configuration of the Web client should be necessary to run
the experiments in order to maintain portability, and
therefore support arbitrary clients.

For every approach, our Web client program was a
Java applet, which was installed on a Web server machine
along with an html page. Every experiment was initiated by
first pointing to the html page from a remote client
computer (Figure 1). After the Java applet was initialized at
the client computer, queries were issued through the
applet's GUI and executed at the remote database server.
Our remote database server, a 3-table relational Microsoft
Access database, was installed on the same machine with
the Web server. The communication between the server and
the client computer was a wireless LAN at 1.2Mbps.

In all cases, the client establishes Web database
connectivity through a middleware program typically
running on the Web server machine. For the Java JDBC
applet, we used a type 3 JDBC driver in accordance to our
design criteria. In this case, the middleware corresponds to
the middle-tier gateway of the type 3 JDBC driver [8]. In
the case of JIMA, the middleware is a local stationary agent
that provides the information necessary for a mobile agent
to load the appropriate JDBC driver and connect to the
database server. In our experiments, we used DBMS-aglets
[6]. In all other cases, we developed the middleware
program, which plays the role of an application server that
uses a JDBC-ODBC bridge driver to connect to the
database server. For more details, see [5].

3] JDBC-ODBC call
[1] Applet Web = .
[2] Connecton Server
& submission of -
query ~p| Middle-
ware
[4] Query results—T"]

Figure 1: Basic configuration

III. TRANSPARENCY OF COMMUNICATION

The dimension of the transparency of communication deals
with the level of abstraction of communication between the
client and the server side, in other words, between the client
and the middleware program. The approaches can be
broadly classified as (1) non-RPC ones, that do not support
any clear remote method invocation mechanism, and (2)
RPC ones with clear remote method invocation semantics.
The Java Sockets and Servlets are non-RPC approaches in
which information between the client and the middleware
program is exchanged using streams of data. Java JDDC
applets, RMI, CORBA and JMA are all RPC approaches.

Table 1 compares the transparency of communications
of the discussed approaches based on the complexity of the
networking API employed by each approach. Clearly, the
RPC approaches involve less complex networking APIs and
hence more transparent client/server communication.

The CORBA approach offers the highest level of
communication transparency since it requires knowledge of
neither URLs nor port numbers to establish database
connectivity. It only requires the reference name with
which the application server was registered at the server
site. One level lower (high) is the RMI approach, which
requires the URL of the database server along with the
reference name of the application server. Similar to the
RMI approach, the Java JDBC Applet approach requires the
URL of the database server, and a data source name, which
identifies the database itself. In this same level is the JMA
approach. Mobile agents identify remote host machines
with their URL, and interact with other agents using their
unique identifiers. One level below (low) is the Servlet
approach requiring a URL, the serviet name, and the type of
operation to be executed by the particular serviet. Finally,
as expected, the approach with the lowest communication
transparency is the socket approach, which requires
knowledge of the IP and of the port number of the
application server.

IV. EXTENSIBILITY

We define extensibility to be: (a) the ability of adding new
components to an approach (e.g., a new application server
object attached to a local or a remote database) and binding
them with the existing ones at the server site; and (b) the
level of modifications needed at the client part that will
enable the client to utilize newly added components. We
classified the various approach in terms of extensibility as
highest, high, average and low (Table 1).

The approaches with the highest degree of extensibility
are the CORBA and JMA. In the one based on CORBA, the
application server and the client applet can bind to a newly

81

Transparency High Highcsl High

Lowest Low High
Extensibility High Lowest High Average Highest Highest
Code Size 4c 22 16c 9¢ 10c 30c
Total effort Lowest Highest High Low Lowest Low

Table 1: Effort of development

added component by only using its reference name. As
opposed to other approaches, new components need not be
necessarily located at the Web server machine in order for
the client to bind to them.

The JMA approach is inherently very extensible since
mobile agents were designed to autonomously collect
information and exploit any newly added servers in order to
complete their execution plan. Moreover, the Web client
need not be aware of the existence of new servers.

The high extensibility of the JDBC applet approach is
due to the type 3 JDBC driver used. Of all the JDBC
drivers, type 3 drivers are the most extensible because of
their middle-tier gateway that maps client applet’s database
requests to any local or remote database calls. The Web
client only needs to name the newly added databases.

The servlet approach also offers high extensibility.
Servlets execute in the context of the Web server and can
call (explicitly) other servlets within the same context. This
means new servlets can be added without any Web client
modification. The client applet can also call explicitly a
new servlet using as a reference the URL, the new servlet’s
name and the type of operation that must be executed by it.

Because of their similarities, one might have expected
that RMI and CORBA approaches would exhibit the same
degree of extensibility. However, compared to the CORBA
approach, the RMI approach is much less extensible for
three reasons. First, new components must be written only
in Java. Second, new components are identified, besides of
their reference name, with an additional URL. Lastly, the
client applet cannot bind to new components that reside on
URLs other than the Web server. Clearly, RMI also offers
lower extensibility than the Java JDBC applet approach.

Finally, the approach with the lowest degree of
extensibility is the socket one. For any new component, a
new socket must be created, bound and managed either at
the side of the application server or at the Web client.

V. EFFORT OF DEVELOPMENT

The effort of development basically combines the
dimensions of transparency of communications and
extensibility, and quantifies them in terms of lines of code.
In Table 1, the lines of code for each approach are
normalized with a constant C.

The approaches with the lowest effort of programming
are the Java JDBC applet and the CORBA. The applet
approach combines the fewer relative lines of code, high
level of network transparency and an average extensibility,
while the CORBA approach offers the highest transparency
and extensibility with relative small code size.

The high extensibility and transparency of the JMA
approach comes with a premium in terms of lines of code.
Mobile agents involved significant programming. The RMI
approach is the opposite of the JMA one. It requires a

relatively low number of lines of code and offers average
extensibility.

The Servlet and Socket approaches involve the most
effort of development, given their large number of lines of
code and their low transparency and extensibility.

VI. PERFORMANCE EVALUATION

For our performance evaluation, we measured the average
response time for our Web client (a) to query the remote
database for the first time, (b) to query the remote database
for a number of subsequent times. Querying the remote
database for the first time differs from subsequent queries
because the first query involves the additional overhead of
establishing the communication link between the client and
the remote database.

The other significant issue that we considered in our
experiments is the size of the query result. Query result size
directly affects the response time in two ways. First, in the
amount of time spent for the query to execute, and second,
in the transport time for the results to reach the client. We
adjusted the size of the query result by changing the
complexity of the SQL statement issued through the client
applet. For our experiments we measured average response
times for a wide range of query result sizes, beginning from
128 bytes (8 tuples) up to 64 kilobytes (1000 tuples). For
each approach, a sufficient number of runs were performed
in order to obtain statistically significant results [11]. Below
we first focus on the experiments for small query results
(128 bytes) and then discuss how the response time of the
different approaches is affected by the query size.

Graph 1 shows the average response time for the initial
and subsequent queries in each approach. For the initial
query, the non-RPC approaches have by far the lowest
response time. This can be explained by the fact that their
initialization phase does not engage any special package
loading or handling by the client. Compared to the Socket
approach, the Servlet approach performs slightly worse
because (a) the communication between the client and the
servlet is marshaled by the Web server, and (b) by
executing as a Web server thread, the servlet receives less
CPU time than the socket application server. Thus, servlets
respond slower to requests and require more time to
assemble and return the query results.

From the RPC approaches, the JMA approach offers
the best performance for a single (initial) query. Significant
part of its cost (around 2 seconds) is due to the process of
dispatching the DBMS-aglet from the client applet to the
aglet router on the Web server and from there to the
database server. In the case of the CORBA approach, the
first query is slightly more expensive than the one in the
JMA approach because of the overhead of initializing the
necessary ORB classes and the binding to the application
server. This overhead is quite significant (around 3.20
seconds) which can be clearly seen by comparing the
response time of the initial and subsequent queries.
Following the CORBA approach is the Java JDBC
approach in which the response time of the initial query is
increased by a considerable amount of time by the
downloading of the JDBC driver from the Web server.

82

Winitial Query

M Subsequent Query

Socket Senviet JMA Corba

Applet RMI
JDBC

Graph 1: Performance of all approaches for initial and subsequent query
(128 bytes result size)

To our surprise, the RMI approach performs by far the
worst for the initial query. We expected the RMI approach
to exhibit better performance because, as opposed to the
other RPC approaches, it does not involve the loading of
any specific package during initialization time. The only
way to explain this behavior is to attribute the increased
response time to the interpreted method of RMI calls when
binding the client applet to the application server.

For subsequent queries, the performance of the
CORBA and RMI approaches dramatically improves, and
becomes close to the best performance exhibited by the
Socket approach. The reason is that the client applet is
already bound to the remote application server and only a
remote procedure call on the application server is required
to query the database. For a similar reason, the Java JDBC
applet approach also exhibits a significant performance
improvement for subsequent queries - the JDBC driver is
already downloaded and initialized at the client applet.
Having the DBMS-aglet already connected to the remote
database and ready to process a new query on behalf of the
client applet, the JMA approach also improves its response
time for subsequent queries. However, this response time is
the worst from all the other approaches. We attribute this to
two reasons. First, the two required messages to implement
subsequent queries have to be routed through the aglet
router, and second, a mobile agent is not a stand-alone
process and it does not receive full CPU time.

On the other hand, the Java Servlet approach improves
only slightly its performance because the steps for
executing a subsequent query do not differ from the ones
for the initial query. The minor improvement is due to the
fact that any subsequent URL connections from the client
applet to the Web server require less time since the address
of the Web has already been resolved in the initial query.

In order to better illustrate the scalability of each
approach, we plotted in Graph 2 the average time required
by each approach to query the database for a number of
consecutive requests using the formula: For n consecutive
queries, the average time required is the sum of (a) the
average response time for one initial query, and (b) n-1
times the average response time for a subsequent query.

As shown in Graph 2, the socket approach is the most
efficient for any number of consecutive queries. Despite its

20.0 o+

Socket

18.0 4 | =il Serviet
1604 | ——l—JMA
&~ Corba
oo AppEt JDBC

12 3 4 5 86 7 B 8 10 1% 12 13 34 15 36 17 18 18 20 21 22 23 24 25 26 27 6 29 I
Consecutive Queries

Graph 2: Average performance for up to 30 consecutive queries (128 bytes of

result size)

good performance for initial queries, the Servlet approach
does not scale well since the response time for subsequent
queries almost matches the response time for initial queries.
Likewise, the JMA approach scales very badly given that its
response time for subsequent queries is the worst of all the
approaches. The CORBA, Java JDBC applet, and RMI
approaches appear to scale well, however, the RMI
approach appears less attractive due to its worst
performance of all the approaches for initial queries.

Graph 3 illustrates the sensitivity of each approach to
the size of query results. Due to space limitations, we show
here only the results for subsequent queries. The results for
initial queries are similar.

The first striking observation is that the response time
of the Java JDBC applet and JMA approaches increases
exponentially with query result sizes larger than 20KB.
The Java JDBC applet approach performs by far the worst
for increased result size. This can be explained by the fact
that in JDBC rows from a query result are retrieved one at a
time. Specifically, to retrieve one row from the query result,
the client must call a method on a Java ResultSet object,
which is mapped on the remote database server through the
Gateway. Consequently, for a large size of query result, a
large number of those remote calls have to take place. In
that case, large query results not only increase dramatically
the response time but they also increase the Internet traffic.

The bad scaling of the JMA approach can be explained
in the same way as the bad performance of the Serviet
approach. Both mobile agents and servlets do not execute as
stand-alone processes, and therefore, they do not receive
full CPU time and heavily depend on the supporting
execution environment. The other RPC approaches exhibit
acceptable performances (close to linear for sizes above
20KB) with the CORBA approach being slightly better. As
indicated above, the implementation of RPC calls in
CORBA is much faster compared to RMI’s one.

VII. CONCLUSIONS

In this experimental paper, we have implemented,
evaluated, and compared all currently available Java-based
approaches for Web database connectivity. Our comparison
was based on the performance of query processing, the
transparency of communication and extensibility.

83

250

e SOCKEL
200 —f— Serviet o s
—a—Corba
150 —3— RMI
—B8—JMA
100 —&— Applet JDBC /
50 //E]
0 _‘W

5KB 10KB 20KB 64KB

Graph 3: Subsequent Query

The results of our comparison showed that the CORBA
approach is the most transparent to communication,
extensible and easy to develop, while its performance is
comparable to the best performing approach that employs
sockets. Hence, it offers the best promise for the
development of large Web applications.

In our study, we confirmed the desirable properties of
the emerging mobile agents technology, that is, of high
extensibility and transparency at a relatively low
development effort. But, at the same time, our study
provided an insight to potential scalability problems with
the currently available mobile agent implementations. The
JMA approach cannot support interactions that require
movement or exchange of large amounts of data such as
large number of consecutive queries with increased size of
query result. Hence, it is necessary to develop more
efficient mobile agent infrastructures, if the full potential of
mobile agents is to be explored. As part of our future work,
we investigate the possibility of merging mobile agents and
the CORBA technology in order to facilitate a scalable and
efficient Web database connectivity.

REFERENCES

(11 E. Anuff. Java Sourcebook. Whiley Publishing, 1996.

[2] S.P. Hadjiefthymiades and D. I. Martakos. A Generic
Framework for the Development of Structured Databases on
the WWW. Fifth Int’l WWW Conference, May 1996.

{31 C. G. Harrison, D. M. Chessm, A. Kershenbaum. Mobile
Agents: Are they a good idea? Research Report, IBM
Research Division, 1994.

{4] G. Helmayer, G. Kappel, and S. Reich. Connecting Databases
on the Web: A Taxonomy of Gateways. Fighth Int’l DEXA
Conference, Sept. 1997.

{5] S. Papastavrou. P.K. Chrysanthis, G. Samaras, and E.
Pitoura. An Evaluation of the Java-based Approaches for
Web Database Connectivity. CSD Technical Report.
University of Pittsburgh, Mar.2000.

[6] S.Papastavrou, G. Samaras, and E. Pitoura. Mobile Agents
for WWW Distributed Database Access. Fourteenth /EEE
Int’l Conference on Data Engineering, Feb. 1999,

[71 Sun Microsystems Inc., Java Development Kit,

" <http://java.sun.com/jdk>.

[8] Sun Microsystems Inc., JDBC drivers,
<http://java.sun.com/products/jdbe/drivers.html>.

[9] Visibroker for Java: Programmer’s Guide, Version 3.0.
Borland, <http://www.visigenic.com>.

